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Abstract: In this paper, to overcome the controller singularity problems, a novel
neural parameters adaptive law for on-line identification is proposed, such strategy
avoid specific adaptive weights zero-crossing. Using a priori knowledge about the
real plant, a recurrent neural network is proposed as identifier. Based on the neural
identifier model, a discontinuous control law is derived, which combines Block
Control and Sliding Modes. The proposed scheme is tested in a induction motor
via simulations. Copyright R°IFAC 2005
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INTRODUCTION

Although the large number of success applications
of neural networks for control and identification
systems, one important drawback of such neural
approaches (Rovithakis and Christodolou , 1994),
(Kosmatopoulus et. al. , 1995) is the requirement
of full-connected recurrent neural networks. This
usually implies a large number of synaptic con-
nections, becoming such schemes unacceptable for
real time applications. To alleviate this situation,
certain level of insight about the system is utilized
to improve the empirical modelling. For example,
in Loukianov et al. (2002), the Nonlinear Block
Controllable form (NBC-form) (Loukianov , 1998)
and the relative degree are taken into account to
design a dynamic neural network to identify the
plant; based on such neural identifier, a control
law is derived combining the Block Control and
Sliding Modes techniques (Utkin , 1999), yielding
the so called Neural Block Control (NBC).

Comparing with others neural control techniques
(see: Sanchez, Perez and Ricalde (2003) and

Rovithakis and Christodolou (1994)) that re-
quire full-state full-connected neural identifiers,
the NBC strategy, has the advantage that only a
partial-state partially-connected neural identifier
is required, reducing significantly the mathemati-
cal analysis and the computational burden.

Nevertheless, as well as several feedback lin-
earization like controllers (Ge and Wang , 2002),
the NBC may present singularities, yielding fre-
quently, closed-loop system instability. In this pa-
per, to overcome such controller singularity prob-
lem, a priori information about the parameters of
the neural model is used to design the update law;
such strategy avoids not only controller singular-
ities, but also the drift parameter phenomenon.

1. HIGH ORDER RECURRENT NEURAL
NETWORKS

In this paper, for the identification task, expan-
sions of the first order Hopfield model called High
Order Recurrent Neural Networks (RHONN) are



used (Kosmatopoulus et. al. , 1995). Additionally,
the RHONN model is very flexible and allows
to incorporate to the neural identifier a priori
information about the plant structure.

A recurrent high-order recurrent neural network
of n neurons and m inputs is defined as

ẋi = −aixi +
LiX
k=1

wik

Y
j∈Ik

η
dj(k)
k , i = 1, ..., n (1)

where xi is the i-th neuron state, Li is the number
of high order connections, {I1, I2, ..., IL} is a col-
lection of non-ordered subsets of {1, 2, ...,m+ n},
ai > 0, wik are the adjustable weights of the
neural network, dj(k) are non-negative integers,
and η is a vector defined as

η= [S(x1), . . . , S(xn), x1, . . . , xn, u1, . . . , um]
>

= [η1, . . . , ηn]
>

with u = [u1, ..., um]
> being the input to the

neural networks, and S(·) a smooth hyperbolic
tangent function formulated by

S(x) =
2

1 + exp(−βx) − 1.

Defining the high order terms vector as

ρi =

Y
j∈I1

η
dj(1)
j ,

Y
j∈I2

η
dj(2)
j , ... ,

Y
j∈IL

η
dj(Li)
j

 ,
the system (1) can be rewritten as

ẋi = −aixi +w>
i ρi(x,u), i = 1, ..., n (2)

where wi = [wi,1...wi,Li ]
>.

2. ON-LINE IDENTIFICATION

In this section, we consider the problem of identi-
fying a nonlinear system given by

χ̇ = f(χ,u) (3)

where χ ∈ <n, u ∈ <m, f is a smooth vector field
and fi(χ,u) its entries. In order to identify (3),
as discussed in Kosmatopoulus et. al. (1995), we
assume that this system is fully described by a
RHONN, with each neuron state given by

χ̇i = −aiχi+w∗>i ρi(χ,u)+νi(t), i = 1, ..., n (4)

with w∗i , ρi ∈ <Li , the optimal unknown parame-
ters vector w∗i is defined as

w∗i = arg minwi

½
sup
χ,u

¯̄̄̄
fi(χ,u) + aiχi

−w>i ρi(χ,u)− νi(t)

¯̄̄̄¾
(5)

where the modelling error term νi is defined as

νi(t) = fi(χ,u) + aiχi −w∗>i ρi(χ,u). (6)

To develop the weight update law, the series-
parallel model is used:

ẋi = −aixi +w>
i ρi(χ,u), i = 1, ..., n (7)

where xi is the i-th component of the RHONN,
and χ is the plant state.

2.1 On-Line Update Law for Constrained Weights

In this Section a on-line update law is developed
to constrain adaptive parameters trajectories, into
a compact set. First, let define the i−th identifi-
cation error ei = xi − χi and the i−th parameter
error w̃i = wi −w∗i .
Assuming that the modelling error term νi is zero,
from (4) and (7) the identification error dynamics
is obtained as

ėi = −aiei + w̃>i ρi. (8)

Consider a Lyapunov function candidate of the
form

Vi =
1

2
(e2i + w̃

>
i Γiw̃i) (9)

where Γi = diag{γi1, γi2, ..., γi,Li} is a diagonal
positive definite matrix. Differentiating (9) along
the trajectories of (8), yields

V̇i = −aie2i + eiw̃
>
i ρi + w̃

>
i Γi

·
w̃i. (10)

Additionally to plant structure, we consider the
following a priori knowledge about the optimal
weights:w∗i ∈W ∗i =W ∗i1×W ∗i2×...×W ∗i,Li ⊂ <Li ,
where W ∗ik = {wminik ≤ w∗ik ≤ wmaxik }, k =
1, 2, ..., Li is called the constrain set of wik. We
assume that, for every optimal weight, its upper
and lower bounds are known. This fact is used
to design an update law that avoids the adaptive
weights drift and/or zero crossing. The aforemen-
tioned assumption implies that when the i−th pa-
rameter error is outside of W ∗ik, its corresponding
parametric error sign can be calculated as follows:

sign(w̃ik) =

½
1, if wik > wmaxik

−1, if wik < wminik
, k = 1, 2, ..., Li

The weight adaptive law is defined as

ẇi = Γ
−1
i (−eiρi −Disign(w̃i)) (11)

where Di=diag{di1, di2,...,di,Li} with di,k =
σik(|eiρik|+ c), k = 1, 2, ...Li, c > 0 and

σik =

½
0, if wminik ≤ wik ≤ wmaxik

1, if wminik > wik or wik < wmaxik

.

Then, equation (10) becomes

V̇i =−aie2i − w̃>
i Disign(w̃i)

≤−aie2i − c

LiX
k=1

σikw̃iksign(w̃ik)

=−aie2i − c

LiX
k=1

σik|w̃ik| ≤ −aie2i



The next lemma (Khalil , 1996) is needed to prove
the weight adaptive law convergence.

Lemma 1. Consider the system

ẋ = f(x) (12)

where x ∈ <n and f(x) is locally Lipschitz. As-
sume that there exists a function V : <n → <+ ra-
dially unbounded and continuously differentiable
such that

V̇ =
∂V

∂x
f(x) ≤−W (x) ≤ 0

∀x ∈ <n, where W (x) is a positive semidefinite
radially unbounded function. Then all trajectories
of (12) are ultimately and uniformly bounded for
t ≥ 0 and x(0) ∈ <n, moreover

lim
t→∞W (x(t)) = 0.

Using Lemma 1, with x = [ei, w̃>i ]
>, V (x) =

Vi(ei, w̃i) and W (x) = −aie2i , the adaptive law
(11) ensures the convergence of ei to zero and the
boundness of w̃i.

Lemma 2. The adaptive vector wi converges to
W ∗i .

Proof. Let assume that wik is outside W ∗ik at
t = 0, then, from (11), the dynamics of wik is
given by

ẇik = γik(eiρik − (|eiρik|+ c)sign(wik)) (13)

Now, we analyze the following cases.

Case 1. wik > wmaxik . Equation (13) becomes

ẇik = γik(eiρik − (|eiρik|+ c)) ≤ −cγik
Using the comparison principle (Khalil , 1996) we
have

wik(t) ≤ wik(0)− cγikt

which means wik(t) ≤ wmaxik for t > ts, where ts is
a finite time.

Case 2. wik < wminik . Equation (13) is rewritten
as

ẇik = γik(eiρik + (|eiρik|+ c)) ≥ cγik

Again, using the comparison principle we have

wik(t) ≥ wik(0) + cγikt

which means wik(t) ≥ wminik for t > ts, where ts is
a finite time.

In both cases wik converges to W ∗ik. Due to the
definition of W ∗i , we conclude that wi converges
into W ∗i .

Let define ∆w∗ik = |wmaxik − wminik |, and ∆w∗i =
[∆w∗i1, ∆w

∗
i2, ...,∆w

∗
i,Li,

]>. By Lemma 2 it is easy
to see that the parameter error w̃i converges into
the set W̃i = {w̃i : |w̃ik| ≤ ∆w∗ik, k = 1, 2, ..., Li}.

The update law forces the trajectories of wi to
converge into the constrain set W ∗i ; we might
select this set such that not only all weights
remain bounded, but also some of them dot not
change their signs. In Section 5, this feature is
used to avoid controller singularities.

It is worth to mention, that the selection of the
constrain set W ∗i remains as an open problem. In
this paper, such selection was made based on the
observation of experimental results, which were
published in Loukianov et al. (2002).

2.2 On-Line Weight Update with no zero modelling
error

When the modelling error term is not zero, any
standard adaptive laws can not guarantee either
the boundness of the parameters or the conver-
gence of the identification error to zero. Further-
more, the parameters drift phenomenon could oc-
cur. The “σ-modification” (Kosmatopoulus et. al.
, 1995) is often used to overcome this situation and
to assure, at least, that the identification error and
the weights are bounded. In this work the update
law (11) guarantees the converge of ei and wi into
a bounded set, which is stated in the following
Lemma.

Lemma 3. Consider the system (4) and the RHONN
identifier (7),with weight adaptation law (11), and
assume the modelling error (6) is not zero. Then,
ei and wi converge to a bounded set

Proof. The derivative of Vi along the trajectories
of (4) and (11) is given by

V̇i = −aie2i − w̃>
i Disign(w̃i)+eiνi(t).

Applying the triangular inequality and defining
d0 = maxt≤0(νi(t)), yields

V̇i ≤ −aie2i − c

LiX
k=1

σik|w̃ik|+ e2i
2
+

d0
2

2
.

Selecting ai, such that αi = ai − 1
2 > 0, yields

V̇i ≤ −αie2i +
d20
2
.

Substituting ei from (9) in the above inequality,
it is rewritten as

V̇i ≤ −2αiVi + αiw̃
>
i Γiw̃i +

d20
2

Since w̃>i converges to W̃i, we conclude that ei
and w̃i converge into the residual set

Di =

(
{ei, w̃i} : Vi ≤

αi∆w
∗>
i Γi∆w

∗
i +

d20
2

2αi

)
and the proof is completed.
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Fig. 1. Block Control Scheme

3. NEURAL BLOCK CONTROL

In this scheme, the control law based is on the
neural network (7). The RHONN parameters are
updated according to (11). Fig. 1 explains the
proposed control scheme, which is based on the
following proposition.

Proposition 4. Given a desired output trajectory
yr, a dynamic system with output yP , and a
neural network with output yN , then it is possible
to establish the following inequality:

kyr − yP k ≤ kyN − yP k+ kyr−yNk
where yr−yP is the system output tracking error,
yN − yP is the output identification error, and
yN− yr is the RHONN output tracking error.

Based on this proposition, it is possible to divide
the tracking problem in two parts:

(1) Minimization of kyN − yPk, which can be
achieved by the proposed on-line identifica-
tion algorithm (11).

(2) Minimization of kyN−yrk, for that a track-
ing algorithm is developed on the basis of the
neural identifier (7).

The second goal can be reached by designing
a control law based on the RHONN model. To
design such controller we propose to use the NBC
methodology (Loukianov et al., 2002).

4. INDUCTION MOTOR APPLICATION

In order to illustrate the application of the pro-
posed approach let consider the induction motors
control. The α− β coordinate system model is

χ̇1 = c1(χ2χ5 − χ3χ4)− c0TL (14)

χ̇2 =−c2χ2 − npχ1χ3 + c3χ4 (15)

χ̇3 =−c2χ3 + npχ1χ2 + c3χ5 (16)

χ̇5 = c4χ2 + c5npχ1χ3 − c6χ4 + c7uα (17)

χ̇6 = c4χ3 − c5npχ1χ2 − c6χ5 + c7uβ (18)

Where χ1 represents the angular velocity of the
motor shaft, χ2 and χ3 are, the rotor magnetic

flux leakage components, χ4 and χ5 are the sta-
tor current components, uα and uβ stand, re-
spectively, for the voltage applied on the sta-
tor windings, and TL represents the load torque
perturbation. The constants ci, i = 0, ..., 7 are
defined as follows: c0 = b

J , c1 =
Mnp
JLr

, c2 =
Rr
Lr

,

c3 =
RrM
Lr

, c4 =
RsL

2
r+RrM

2

Ls(LsLr−M2) , c5 =
Rr
Lr

M
LsLr−M2 ,

c6 =
M

LsLr−M2 , c7 =
Lr

LsLr−M2 . Where Ls, Lr and
M , are the stator, rotor and mutual inductances,
respectively, Rs and Rr, are the stator and rotor
resistances, J is the rotor moment of inertia and
np is the number of stator winding pole pairs.

Commonly, induction motor applications require
not only shaft speed regulation, but also flux
magnitude φ = χ22 + χ23 regulation. Since the
currents and velocity are the only measurable
variables, the rotor fluxes estimation is required
for neural networks identification. In this work,
we use the flux observer proposed in Loukianov
et al. (2002); it is a partial state observer with
adjustable convergence rate. This features enables
to reduce the number of calculations comparing
with a full state observer. For the rest of the
calculations on this paper, the estimated fluxes
are considered as the real ones.

4.1 Neural Model for Induction Motors

Let assume that the partial model (14-16) has the
RHONN representation, without modelling error
terms, given by

χ̇1 =−a1χ1 +w∗>1 ρ1

χ̇2 =−a2χ2 +w∗>2 ρ2 (19)

χ̇3 =−a3χ3 +w∗>3 ρ3

wherew∗1 = [w∗11, w∗12, w∗13]>,w∗2 = [w∗21, w∗22, w∗23]>

and w∗3 = [w
∗
31, w

∗
32, w

∗
33]

>, are the optimal weight
vectors, which are constant and unknown, and
ρ1 = [S(χ1), S(χ3)χ4, S(χ2)χ5]

>, ρ2 = [S(χ2),
S(χ1)S(χ3), χ4]

> and ρ3 = [S(χ3), S(χ1)S(χ2),
χ5]

> are the high order term vectors.

Based on the mathematical model (19), the fol-
lowing reduced order neural identifier is proposed

ẋ1 =−a1x1 +w>1 ρ1
ẋ2 =−a2x2 +w>2 ρ2 (20)

ẋ3 =−a3x3 +w>3 ρ3
For this model w1 = [w11, w12, w13]

>, w2 =
[w21, w22, w23]

> andw3 = [w31, w32, w33]> are the
adaptive RHONN parameters, which are adapted
using (11). x1 is the neural speed, and x2 and x3
are the neural fluxes, these neural states are used
to identify χ1, χ2 and χ3 respectively.



The output variables to be controlled are the
speed χ1 and the flux magnitude φ, respectively.
Now, let define the neural flux magnitude as ϕ =
x22 + x23. Then, the plant output is yP = [χ1
φ]>, the neural output is yN = [x1 ϕ]> and the
reference signal is yr = [ωr ϕr]

>.

4.2 Neural Block Controller Design

In this section, based on the neural identifier (20),
a control law is developed using the Neural Block
Control strategy (Loukianov et al., 2002). The
neural model (20) and the stator currents model
(15) are combined to obtain a quasi NBC-form,
consisting of two blocks:

ẋ1 = f̃1+B̃1χ2

χ̇2 = f2+B2u (21)

with x1 = [x1, x2, x3]
>, χ2 = [χ4, χ5]

>, u =
[uα,uβ ]

>,

f̃1=

 −a1x1 + w11S(χ1) + w14
−a2x2 + w21S(χ2) + w22S(χ1)S(χ3)
−a3x3 + w31S(χ3) + w32S(χ1)S(χ2)

 ,
B̃1 =

−w12S(χ3) w13S(χ2)w23 0
0 w33

 ,
f2 =

·
c4χ2 + c5npχ1χ3 − c6χ4
c4χ3 − c5npχ1χ2 − c6χ5

¸
, B2 =

·
c7 0
0 c7

¸
,

For shorter notation all the weights are ordered in
one vector w = [w>1 w>2 w>3 ]

>
. This model can

be reduced to the NBC-form (Loukianov , 1998),
and therefore the Block Control methodology is
applied. At first, the tracking error for the neural
output is rewritten as

z1 = yN − yP =
·
x1 − ωr
ϕ− ϕr

¸
=

·
z1
z2

¸
. (22)

Then, the tracking error dynamics can be ex-
pressed as the first block of the NBC-form:

ż1= f̄1+B̄1χ2 (23)

where f̄1 =
·
f̄11
f̄12

¸
, B̄1 =

·
w12S(χ3) w13S(χ2)
2w23χ2 2w33χ3

¸
,

with f̄11 = −a1x1 + w11S(χ1) + w14 − ω̇r and

f̄12 = 2x2 (−a2x2 + w21S(χ2) + w22S(x1)S(χ3)) +

2x3(−a3x3 + w31S(χ3) + w32S(χ1)S(χ2))− ϕ̇r.

Following the block control strategy, the quasi-
control vector χ2 is selected as

χ2 =

·
χ4
χ5

¸
= B̄−11

¡−f̄1 +Kz1¢+ z2 (24)

where K = diag{−k1,−k2}, z2 = [z4, z5]
> and

B̄−11 = 1
δ

·
2w33χ3 −2w23χ2
−w13S(χ2) w12S(χ3)

¸
, with δ =

2w12w33χ3S(χ3)− 2w13w23χ2S(χ2), and k1, k2 >
0. Then, (23) can be rewritten as

ż1=Kz1+B̄1z2.

Now, the new variables z2 are expressed from (24)
as

z2 = B̄
−1
1

¡
f̄1 −Kz1

¢
+ χ2 = α2. (25)

Considering the time derivative of (25), the second
block of the NBC-form for the variables z4 and z5
is presented as

ż2 = f̄2 +B2u (26)

where f̄2 = f2−
³
∂α2

∂x1
f̃1 +

∂α2

∂χ1
f1 +

∂α2

∂χ1
f2 +

∂α2

∂w ẇ

+∂α2

∂yr
ẏr+

∂α2

∂ẏr
ÿr

´
. Now, the Sliding Modes con-

trol strategy formulated as

u = −u0sign (z2) , u0 > 0

under the condition c7u0 > max(
¯̄̄
f2
¯̄
), a sliding

mode on the surface z4 = 0, z5 = 0 is guarantees
in a finite time. Then the sliding dynamics, for the
tracking errors variables z1 and z2, are governed
by the second order linear system

ż1 =−k1z1
ż2 =−k2z2

with desired eigenvalues k1 and k2. Hence, we con-
clude that the neural output tracks the reference.

Since z1 tends to zero in the manifold z2 = 0 and
considering zeros the modelling error terms, it can
be appreciated that yP → yN and yN → yr. By
proposition 4 we conclude that yP → yr.

Due to time varying nature of RHONN weights,
we need to guarantee that rank(B̄1)= 2 for all
time. Notice that if the so-called controllability
weights w12, w13, w23 or w33 are zeros, the matrix
B̄1 may lose rank, making the identifier uncon-
trollable and the controller singular. Hence, we
select constrain setsW ∗12, W ∗13, W ∗23 andW ∗33 with
wmin12 < 0, wmin13 > 0, wmin23 > 0, wmin33 > 0, and de-
fine the initial value w12(0) ∈W ∗12, w13(0) ∈W ∗13,
w23(0) ∈ W ∗23, w33(0) ∈ W ∗33, which guarantees
that such weights do not cross by zero, keeping
B̄1 as a full rank matrix.

5. SIMULATIONS

The nominal values of the induction motor para-
meters as: Rs = 12.53Ω, Ls = 0.2464H, M =
0.2219H, Rr = 11.16Ω, Lr = 0.2464H, np = 2,
J = 0.01Kgm. The design parameters for the
fluxes observer are l1, l2 = 3500 and δ = 0.1; for
the neural network, we selected a1 = 18, a2 =
a3 = 500, β = 0.1, Γ−11 = diag{140, 350, 350},
Γ−12 = Γ−13 = diag{200, 200, 1600}, and k1 = 350
k2 = 100. In order to test the proposed scheme
performance, a variation of 2 Ohm per second is



Fig. 2. Simulations without constrained weights

Fig. 3. Simulations with constrained weights

added to the stator resistance and a constant load
torque TL = 3Nm. The bounds for the constrain
sets are selected as: wmin12 = −20000, wmax12 = −50,
wmin13 = 50, wmax13 = 20000, wmin23 = wmin33 = 5,
wmax23 = wmax33 = 20000.

For sake of completeness, we have included a simu-
lation using (11) without sign term (Loukianov et
al., 2002) (no constrained weights), whose results
can be appreciated in Fig. 2. Notice that the
close-loop system becomes unstable; soon after
t = 2.3s, both, the real and the neural speed
diverge from the reference. For the simulations
with constrained parameters, Fig. 3 a) shows that
the system remains stable and the speed reference
ωr is tracked by the real plant speed χ1 and
the neural speed x1. Controllability weights are
plotted for both simulations; notice that for the
simulation without constrained weights (see Fig.
2 b), the system becomes unstable just when the
parameters cross zero. In contrast, the constrained
weights do not change their signs (see Fig. 3
b), avoiding controller singularity and closed-loop
system instability.

6. CONCLUSIONS

In this paper, we have presented an improved
version of the Neural Block Control with a new
weight update law. By using a priori knowledge

about the real plant, the proposed scheme avoids
completely the controller singularity problem and
the parameter drift phenomenon. All signals of the
closed-loop system remain bounded. The new on-
line identification and control scheme is tested on
an induction motor; simulation illustrated its ad-
vantages against the previous results in Loukianov
et al. (2002).
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