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1. INTRODUCTION

Usually, system identification consists in estimat-
ing the unknown parameters for a given control
law, or even for a given control signal. As a matter
of fact, the control signal influences the prop-
erties of convergence of the parameter estimate.
Therefore, it is interesting to asses which control
strategy could maximize the information gained
by a parameter estimator. Such a paradigm where
control is also finalized to identification is called
Active Identification.

In statistics a similar problem is the Optimal
Experiment Design (OED), in which one has to
design an experiment in order to infer about an
unknown parameterized system (Fedorov, 1972;
Ghahramani et al., 1996). Also in machine learn-
ing a similar problem arises when one can choose
the input patterns to optimize an approxima-
tor (active learning) (MacKay, 1992). In robot-
ics, the problem of environment exploration can
be formulated as a particular case of the Active

Identification Problem, and it has been studied
from an heuristic point of view (Baglietto et
al., 2002; Baglietto et al., 2003; Yamauchi, 1997).
In these last years some researchers have used
information theoretic concepts to study control
problems (see (Saridis, 1988; Loparo et al., 1997)).
In (Baglietto et al., 2004) the problem is stated in
a general framework and an approximate solution
is presented. In this paper we formulate the prob-
lem in an information theoretic setting by using
the Shannon entropy as a measure of information
about a set of unknown parameters. Our attention
is on LTI systems with an unknown measurement
channel. This restriction allows us to take on an
identifiability study of the system, and to exploit
in a simple form the information measure. This
allows us to find the control sequence that ex-
tracts the maximum possible amount of informa-
tion about the unknown parameters.

This paper is organized as follows: in Section 2,
the problem formulation is given. In Section 3 a
condition for the identifiability of the system is



stated. In particular it will be proven that this
property depends from the reachability of the sys-
tem. In Section 4 the active identification problem
is solved by means of a entropy minimization
approach. In Section 5 some simulation results
are presented. The proofs of the theorems are
reported in the Appendix.

2. PROBLEM FORMULATION

Let us consider a discrete-time linear system:

xt+1 = Axt + But , t = 0, . . . , T − 1 (1a)

yt = C(θ)xt + ηt , t = 0, . . . , T (1b)

where t = 1, . . . , T is the time instant, xt ∈ Rn is
the state vector, yt ∈ Rh is the vector of measures,
ut ∈ U ⊆ Rm is the control vector, θ ∈ Rnh

is a vector of unknown parameters and ηt is a
disturbance vector. Let us assume in the following
that x0 = x̄ is a known initial condition. The
matrix C(θ) in equation (1b) is defined as

C(θ) = [θij ] .

Since equation (1b) is bilinear in xt and θij ,
system (1) can be rewritten as

xt+1 = Axt + But , t = 0, . . . , T − 1 (2a)

yt = X ′
tθ + ηt , t = 0, . . . , T (2b)

where

X ′
t
4
=




x′t 0 . . . 0
0 x′t . . . 0
...

...
. . .

...
0 0 . . . x′t




and

θ
4
=

[
θ1,1 θ1,2 . . . θ1,n, θ2,1, . . . , θn,n

]′

is the stacking of the rows (transposed) of the
matrix C(θ). It is worth noting that (2b) is the
linear regression form of (1b).

We will adopt the following notation

uT−1
0 = col [u0, u1, . . . , uT−1] .

The vector θ is here considered as a vector of
initially unknown parameters to be estimated.
In order to do this, the Best Linear Unbiased
Estimator is assumed to be used.

The key problem of Active Identification ad-
dressed in this paper is to control the system (1a)
in order to obtain an optimal regressor matrix.
The term optimal is intended here with respect to
the minimization of a suitable information mea-
sure LT (·). The study of the information measure
LT (·) will be the argument of Section 4.

Formally the problem can be stated as follows

Problem 1. (Active identification problem)
Given a suitable information measure LT (·) (re-
lated to the vector θ), find the optimal control
sequence (uT−1

0 )◦ such that

(uT−1
0 )◦ = arg min

uT−1
0

LT (uT−1
0 )

subject to (1a) and

uT−1
0 ∈ U

xt ∈ X ⊆ Rn

where U is the bounded set of the admissible
control sequences.

Problem 1 implicitly assumes the identifiability
of the vector θ and intuitively requires some
degree of reachability of the system (1). Indeed
in the next section it will be proven that the
identifiability of the system is strictly related to
its reachability.

3. IDENTIFIABILITY ANALYSIS

The following theorem follows directly from the
definition of a completely observable system (see
for example (Jazwinski, 1970)).

Theorem 1. System (1) is completely identifiable
(in t ≥ T stages) iff a time horizon T and a control
sequence uT−1

0 exist such that:
T∑

t=0

XtX
′
t > 0. (3)

By defining

Φ′T
4
=

[
X0 X1 . . . XT

]

equation (3) can be rewritten in a more concise
form as

Φ′T ΦT > 0.

If Φ′T ΦT is singular then certain linear combina-
tions of the elements of θ cannot be determined;
in this case, no information about them can be
extracted from the data {y0, . . . , yT }.
In the following it will be proved, that complete
identifiability (for short identifiability) is a struc-
tural property. Indeed, the following result states
the equivalence of reachability and identifiability.

Theorem 2. The system (1) is identifiable in n
stages (and consequently in T > n stages) from
the state zero iff it is completely reachable, i.e., iff

rank (K) = n

where
K =

[
B AB . . . An−1B

]
.



Proof (see the Appendix).

Given a identifiable system, only a subset of the
control sequences guarantee the identification of
the parameters. These sequences will be called
proper sequences.

Let us consider the following constructive proce-
dure to fix a control sequence:

Procedure 1. Let us define

U
4
=




u0 u1 u2 . . . un−1

0 u0 u1 . . . un−2

...
...

. . . . . .
...

0 0 0 u0 u1

0 0 0 . . . u0




=
[
v1 v2 . . . , vn

]
,

(4)
where

vi, i = 1, . . . , n

are the column vectors of U . We want to find a
control sequence un−1

0 such that

vi /∈ ker (K) , i = 0, . . . , n− 1 (5)

Such sequences can be constructed in the follow-
ing two steps:

• take u0 /∈ ker (B), such a vector always
exists (except for the trivial case of B null);

• for each i = 1, . . . , n − 1 take ui such that
the following condition holds

Bui 6=
i∑

j=1

AjBui−j .

Note that these vectors ui always exist (ex-
cept for the trivial case of B null).

Corollary 1. If the system (1) is completely reach-
able then uT−1

0 guarantees the identifiability of
the parameter vector θ if it satisfies the conditions
expressed in (5) (for short, sequences satisfying (5)
will called proper). Moreover it can be constructed
following the lines of Procedure 1.

4. ENTROPY BASED ACTIVE
IDENTIFICATION

Under the reachability assumption, it is possible
to gain all the information about all the para-
meters. Now we address the problem of finding
the control policy which extracts the maximum
information. The first step is to define mathemat-
ically what the information is. We now recall some
concepts from statistics, that will be useful in the
following. Given a general measurement equation

y = g(θ) + η

where y is the measure vector, θ is an unknown
parameter vector and η is a generic noise, the
Fisher Information Matrix (FIM) is defined as the
matrix M whose components are

mi,j(θ) = −E
y

[
∂2

∂θi∂θj
log p(y|θ)

]
. (6)

When we have a prior information about the dis-
tribution of the unknown parameters it is possible
to extend the definition of the FIM in order to take
into consideration also such an information. Then
we have:

mi,j = − E
y,θ

[
∂2

∂θi∂θj
log p(y, θ)

]
, (7)

where expectation is taken with respect to the
observations and the parameters. In the following
we will consider, without loss of generality, the
Bayesian setting, and equation (7) will define the
Bayesian Fisher Information Matrix (BFIM). A
fundamental result and the most important ap-
plication of the FIM is the Cramer-Rao Theo-
rem, which gives us the lowest possible variance
for all unbiased estimators θ̂(y) (see for example
(Soderstrom and Stoica, 1988)

Theorem 3. For every unbiased estimator θ̂(y), if
M is not singular, the following relation holds:

Cov(θ̂) ≥ M−1

where the inequality indicates that the matrix
Cov(θ̂)−M−1 is a non negative definite matrix.

We now use it to define the most efficient estima-
tor.

Definition 1. An unbiased estimator θ̂(y) is said
to be efficient if it meets the Cramer-Rao bound
with equality, i.e., if Cov(θ̂) = M−1.

The Fisher information matrix is therefore a mea-
sure of the amount of information about θ that
is present in the data. It gives a lower bound
on the error incurred when estimating θ from
the data. However, it is possible that there does
not exist an estimator meeting this lower bound.
When the disturbance vectors η0, η1, . . . , ηT have
a Gaussian distribution and are independent and
identically distributed, after straightforward cal-
culations the information matrix for our problem
becomes:

MT (uT−1
0 ) = Φ′T (uT−1

0 )R−1ΦT (uT−1
0 ) (8)

where R is the covariance matrix of the vector η.
In this case, the BFIM turns out to be

MT (uT−1
0 ) = Σ−1 + Φ′T (uT−1

0 )R−1ΦT (uT−1
0 )

(9)
where Σ is the covariance of the prior parameter
density function. It is worth noting that MT



depends on the whole trajectory of the system,
i.e. the sequence of states of the controlled system
and consequently on the control sequence uT−1

0 .

If we consider an efficient unbiased estimator (we
choose to use the Best Linear Unbiased Estimator
- BLUE), we can consider as a Loss function the
entropy of the estimator. The entropy measure
is related to the dispersion of a random variable
X (Cover and Thomas, 1991) and is defined as
follows,

H(X) = −
∫

X
p(x) log p(x). (10)

where X is the support set of the random variable.
In the Gaussian case, the entropy of the estimator
takes on a very simple form.

HT (θ̂) = c + log det
(
M−1

)

where c is a suitable constant (that will not be
considered in the following), and M is the FIM.
In this case HT (θ̂) will be equal to

log det
(
Φ′T (uT−1

0 )R−1ΦT (uT−1
0 )

)−1
.

If the BFIM is considered, HT (θ̂) will be equal to

log det
(
Σ−1+ Φ′T (uT−1

0 )R−1ΦT (uT−1
0 )

)−1
.

Hence the entropy is related to the FIM (or
BFIM) and the minimization of the entropy of the
estimator is equivalent to the minimization of the
determinant of the FIM (or the BFIM). It is worth
noting that minimizing the mean square error is
equivalent to minimize the trace of the BFIM,
while minimizing the entropy of the estimator is
equivalent to minimize the determinant of the
BFIM. In the particular case where which the
measurement is a scalar is possible to derive a
simple form for the determinant of the FIM.

Theorem 4. Consider the system (1) where yt ∈ R
and C(θ) = θ′ and σ2 is the disturbance variance.
Then

arg min
uT−1

0

log det
(
M−1

T

)
=

arg min
uT−1

0

{
−

T∑
t=0

ln(1 +
1
σ2

x′tM
−1
i−1xt)

}

where M−1
−1 = Σ0 is the a priori covariance matrix

of the parameters.

Proof (see the Appendix)

The active identification problem can be stated
as:

Problem 2. (Active identification problem)
Find the optimal control sequence (uT−1

0 )◦ such
that

(
u

T−1
0

)◦
= arg min

uT−1
0

{
−

T∑
t=0

x′tM
−1
i−1xt

}

subject to eq. (1a) and

uT−1
0 ∈ U

xt ∈ X ⊂ Rn

This problem can be solved by means of con-
strained nonlinear programming techniques.

In the particular case, where the set the state
vectors belong to takes on the form X = {x :
x′x ≤ c}, c > 0, a greedy policy can be obtained
by solving the following problem.

Problem 3.

min
ut

{−x′t+1M
−1
t xt+1

}

subject to:

xt+1 = Axt + But

ut ∈ U ⊂ Rm

xt ∈ X ∈ Rn

where X = {x : x′x ≤ c}, c > 0, and t =
0, 1, . . . , T − 1.

If rank (B) = n, by using a simple geometric
interpretation (see Fig (1)), it is possible to give
an analytic solution of the problem. At every step
the optimal control vector is given by the following
relation:

u◦t = (B′B)−1B′x∗t+1 − (B′B)−1B′Axt

x∗t+1 =
cvmax

t

‖vmax
t ‖ , t = 0, . . . , T − 1

where vmax
t is the eigenvector relative to the

maximum eigenvalue of the matrix M−1
t and

M−1 = Σ−1
0 .

xt = 0x∗t

Fig. 1. Geometrical interpretation of the state
selection



5. SIMULATION RESULTS

In this section, a statistical analysis of the pro-
posed approach is given. The system considered
is the following:

xt+1 = Axt + But , t = 0, . . . , T − 1

yt = θ′xt + ηt , t = 0, . . . , T

where xt ∈ R3, θ ∈ R3 and

ut ∈ {u ∈ R2 : u′u ≤ 9}.
The matrices A and B are extracted randomly
to form reachable and stable LTI systems, 1000
instances of the problem have been considered.
The noise variance is set to 1. The estimation
square error comparing our approach (based on
the solution of 2) with a randomly selected control
vector is shown in the box plots presented in
figure 2. The time horizon T is set to 20 .

From a comparison of the two strategies, one can
easily see that our approach improves significantly
the parameter estimation with random inputs.

In figure 3 the optimal control is compared with a
sinusoidal control. Here the time horizon T is set
to 40.

Even in this case the optimal control improves sig-
nificantly the parameter estimation effectiveness.
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Fig. 2. Box plots of the estimation square error
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APPENDIX

The following results are required to prove the-
orem 2 and 4. We recall two Propositions from
Linear Algebra (see for example (Zhang, 1999))

Proposition 1. Given two real matrices, A ∈
Rm×n and B ∈ Rn×p, the following relations hold:



rank (AB) ≤ min(rank (A) , rank (B)) (12a)
rank (AB) ≥ rank (A) + rank (B)− n (12b)

Proposition 2. Given a matrix A ∈ Rn×n and two
vectors x and y ∈ Rn, the following relation hold:

det (A + xy′) = det(A)(1 + x′A−1y) (13)

Lemma 1.
T∑

t=1

XtX
′
t > 0 ⇔

T∑
t=1

xtx
′
t > 0. (14)

Lemma (1) follows from the block diagonal struc-
ture of (3).

Lemma 2. n vectors {x1, x2, . . . , xn}, xi ∈ Rn,
are linear independent iff

rank (x1x
′
1 + x2x

′
2 + . . . + xnx′n) = n

Proof (⇒) Consider

Z =
[
x1 x2 . . . xn

]



x′1
x′2
...

x′n




From (12a) and (12b) we have that

n ≤ rank (Z) ≤ n

(⇐) If rank (Z) = n then, by (12a), we have

rank
([

x1 x2 . . . xn

]) ≥ n

which completes the proof.

Proof of Theorem 2 (⇐) Identifiability implies
reachability (from the null state)

Let us fix T = n. Thanks to Property (14) it is
sufficient to study the rank of the matrix

rank (F (1, n)) = rank

(
n∑

t=1

xtx
′
t

)
. (15)

For (2) the rank (F (1, n)) is equal to the number
of linearly independent vectors xi, i = 1, . . . , n,
then the rank expressed in (15) is equal to

rank [x1 x2 . . . xn] , (16)

which, by substitution, can be written as

rank




u′0B
′

u′0B
′A′ + u′1B

′
...

u′0B
′A′n−1 + u′1B

′A′n−2 + . . . + u′n−1B
′




′

or, equivalently,

rank (KU)

where U is defined in (4).

Suppose, by contradiction, that rank (K) < n
then, using relation (12a) we obtain

rank (KU) ≤ min(rank (K) , rank (U))

and then
rank (KU) < n

for all sequences un−1
0 , contradicting the hypoth-

esis.

(⇒) Reachability implies Identifiability (from the
null state)

We have to prove that if the system is reachable
then exists a time T and a sequence uT−1

0 such
that the quantity in (15) is equal to n. Let us fix
T = n. Let us define the column vectors of U as

vi, i = 1, . . . , n.

Choose a control sequence un−1
0 so that vectors

vi satisfy condition (5). This can be always done
by following the construction reported in Proce-
dure 1.

Note that

xi = Kvi, i = 1, . . . , n

and assume, by contradiction, that xi are linear
independent, then ∃α1, . . . , αn with αi 6= 0 for
some i, s.t.

n∑

i=1

αixi = 0

and, by substitution,
n∑

i=1

αiKvi = K

n∑

i=1

αivi = 0.

Then we have a non null linear combination of
vectors belonging to both span(K ′) and Ker(K)
which contradicts the hypothesis.

Proof of Theorem 4

log det
(
M−1

T

)
= log det

(
MT−1 +

1
σ2

xT x′T

)−1

=

− log det
(

MT−1 +
1
σ2

xT x′T

)
.

Now, by proposition 2, we can rewrite (17) as

− log det (MT−1)− log
(

1 +
1
σ2

x′T M−1
T−1xT

)
.

and iterating recursively we obtain

log det
(
M−1

T

)
= −

T∑

i=0

ln(1 +
1
σ2

x′iM
−1
i−1xi)


