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Abstract: The traditional approach to improving the lethality of a missile has been to 
concentrate efforts in the guidance and control systems to improve accuracy and 
agility. In this paper, we consider how optimizing the endgame, the final few 
milliseconds before detonation, can yield improvements in overall lethality. As there 
is likely to be uncertainty in both the target parameters and missile coordinates, a 
multiobjective problem is developed so that the robustness of a solution can be 
traded against its efficacy. The ability to quickly determine promising endgames is 
likely to be of benefit when exploiting modern control schemes, such as MPC, that 
offer improved accuracy and agility. Copyright © 2005 IFAC 
�
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1. INTRODUCTION 

 
The present generation of missile systems are likely 
to be sub-optimal in many engagement scenarios 
currently considered. Examples of engagements 
include both anti-air and ground attack domains and 
these have to allow for an increased use of stealth, 
more effective countermeasures and the use of 
redundant subsystems for increased mission 
survivability. Traditionally, improvements in missile 

lethality have been sought through improved 
guidance and control laws, for example, to optimize 
guidance for a specific control law and engagement 
conditions (Gurfil, 2001) or by solving receding 
horizon optimizations to achieve fast and realisable 
online target tracking (Kim et al, 2001). In this paper, 
the focus is on optimization of the endgame, i.e., the 
reachable set of outcomes in 

terms of engagement geometry, rather than the 
guidance and control laws that achieve such a state.  
 
Flyout is the portion of flight from release to 
immediately before detonation. During flyout the 
missile has to engage the target and deliver the 
warhead to within a close distance of the target. The 
engagement geometry at the start of the endgame is 
critical to the lethality and is the state at the end of 
flyout. The next section describes how the endgame 
can be modelled and a programme (AGILE) for 
achieving that is briefly described. The use of 
optimization to enhance the lethality of endgames is 
then considered and further developed with 
multiobjective formulations to find endgames that 

have a high probability of kill as well as robustness to 
variations in the parameters of the problem. 
 
 

2. ENGAGEMENT MODELLING 
 
The trajectories and orientations of the missile and 
target in the final milliseconds before detonation are 
collectively known as the endgame geometry. 
Consider the missile-target engagement shown in Fig. 
1. Using GW372 notation (Payne, 1995) the 
relationship between the Cartesian frames of 
reference for the missile and the target can be defined 
where the x, y and z axes are usually aligned in both 
frames as follows: 



     

• The x-axis is to the left (e.g., along the port 
wing of a fixed-wing aircraft); 

• The y-axis is up (in level flight, the direction 
of the pilot’s torso); 

• The z-axis is ahead, along the centre line of 
the aircraft or missile (i.e., in direction of 
flight with zero incidence). 
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Fig. 1: Engagement geometry in GW372 notation. 
 
The GW372 coordinates only specify relative 
position, velocity and orientation. Higher derivatives, 
e.g., acceleration and rotation rates, are not required 
as lethality is not usually sensitive to them due to the 
very short time periods involved in damage 
mechanisms. All angles in GW372 are specified in 
degrees and from Fig. 1 the following are identified: 

• Vm and Vt are missile and target speeds 
(m/s). 

• η is the engagement angle that is subtended 
between the missile and target velocity 
vectors (η = 0 → tail chase, η = 180° → 
head-on). 

• ω is target roll. 
• δ, ε, and ψ define missile yaw, pitch and 

roll. 
• φ, Sr and z define the missile burst points. φ 

is known as the dartboard angle, Sr is the 
dartboard radius and z specifies the position 
of the burst point along the trajectory. 

• Additional parameters, x0, y0 and z0, define a 
missile aim point in the target’s frame of 
reference. This point defines the warhead 
detonation point as the cylindrical polar 
coordinate system (φ, Sr and z) where the x-
axis is aligned with missile velocity. 

 
The important feature of this system is the use of a 
‘Common Velocity’ (CV) plane as a datum for 
measuring many of the angles in the system.  The CV 
plane is defined as the plane containing the missile 
and target velocity vectors (or parallel vectors), and 
passing through the target origin.  The CV plane can 
have any orientation in space. In reality the missile 
and target both move along their respective velocity 
vectors; however it is easier to think of the target as 
stationary with the missile moving along a vector VR 
towards it.  It is usually assumed that as the missile 
approaches the target along VR all the other 
parameters remain constant (no manoeuvre takes 
place).  This assumption is justified because all the 

fusing and lethality events take place over a few 
milliseconds and within a very short distance (a few 
meters) of the trajectory length.  The GW372 system 
therefore has the advantage that the primary 
parameters can be changed independently of each 
other, and each has a clear physical meaning. 
A lethality prediction tool, Analytic Gaussian 
Intersection for Lethality Engagement (AGILE), 
allows engagements defined using GW372 to be 
evaluated and a value (probability) of engagement 
uncertainty, or ‘kill probability’, Pk determined 
(Watson, 2003).  AGILE can evaluate an endgame 
geometry in milliseconds, including: prediction of 
damage inflicted by warhead fragments on the target 
or target components; a close-burst model 
incorporating blast effects; direct impact model; and 
a simple fuzing model.  

The principal method of representing the above 
model features is by using 3-dimensional Gaussian 
functions. A Gaussian function f has the following 
form: 
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where x is a spatial position vector (with three 
Cartesian components),  a is the maximum value of f, 
b is the position vector where f is maximal and C is a 
3 × 3 positive-definite symmetric matrix representing 
the shape and orientation of level sets (surface 
contours) of f. The level sets of a Gaussian are 
ellipsoids, so the Gaussian itself can be thought of as 
a fuzzy ellipsoid; the value of f decays smoothly from 
a to zero as the distance from the centre b of the 
ellipsoids increases. 
 
The following objects are represented by sums of 
Gaussian functions in AGILE: 
• Target vulnerability to warhead fragment 

damage. Regions of high vulnerability are 
close to the centre of one of more Gaussians, 
whilst regions of low or zero vulnerability are 
typically further away from the centres. 

• Warhead fragment cluster density. This is not 
the density or mass of individual fragments, 
but their average number per unit volume, or 
‘population density’. Where the target 
vulnerability and warhead fragment density 
are both high, the level of damage (probability 
of target kill or component failure) will be 
high. 

• Close-burst lethality and warhead blast 
damage. A set of ellipsoids and cylinders is 
used to define a neighbourhood of the target 
for which a ‘kill’ is certain. This 
neighbourhood is the set of all points inside 
one of more of these objects; the latter are 
derived from level sets (contour surfaces) of 
Gaussian functions. 

• Target shape, which is used by both the fuzing 
and impact models. In the fuzing model 
Gaussians are used to define the external 



     

shape of the target and its reflectivity to the 
radiation used by the fuzing sensor. In the 
impact model Gaussians are used to define the 
shape of both the missile and target, so that 
the severity of a collision can be calculated. 

• Missile shape. Used by the impact model. 
• Radiation pattern of the fuzing sensor. This 

information is used in conjunction with the 
shape and reflectivity of the target to predict 
the moment when the fuze is triggered. 

 
Gaussian components are used in AGILE for the 
following reasons: 
• Their intersections can be computed very 

efficiently using an analytical formula, hence 
the acronym Analytic Gaussian Intersection 
for Lethality Engagement. 

• Uncertainty in the endgame geometry can be 
represented directly by Gaussian components, 
reducing or avoiding the need for Monte-
Carlo methods. 

 
The reason for AGILE’s speed is its ability to 
represent many warhead fragments as a single entity; 
instead of computing the intersection of each 
fragment with the target, a single calculation can 
applied to hundreds of fragments as an ensemble. 
Fig. 2 shows an example of an endgame for a simple 
fixed-wing target. Here, the engagement angle η = 
46°, represents a rear, side-on impact at a miss-
distance of 15m. From the fragment trajectories, it 
can be seen that for this endgame geometry, the port 
wing is vulnerable to fragment damage while the rest 
of the aircraft remains unshaved. AGILE evaluates 
kill probabilities from the Gaussian components 
described above assigning an overall probability of 
kill, Pk, and individual probabilities for a kill arising 
from cockpit, fuselage, engine and wing damage. 
Clearly, in Fig. 2 the majority of the Pk arises from 
fragments damaging the wing and its components. 

 
Fig. 2: Fragment vulnerability for simple fixed-wing 
aircraft. 
 
The parameters listed in Table 1 can be varied over 
the ranges shown in an AGILE endgame evaluation.  
Fig. 3 shows the result of exercising AGILE with 
1000 input sets where the values for the parameters 
are chosen randomly over these ranges. It is clearly 
unlikely that a random endgame will yield a high 
value of Pk. By optimizing the endgame geometry to 
achieve high and/or robust Pk, the missile flyout 

endpoint is determined and a suitable guidance law 
can be developed using conventional approaches 
such as Shinar & Vladimir (2003) or intelligent ones 
such as Leng (1996). 
 
In the next section, a series of optimizations are 
employed to determine good engagement geometries. 
The engagement space is first sampled and direct 
optimization of the probability of kill considered 
through a restricted parameter set. However, a 
requirement of a good endgame is that the probability 
of kill should be robust to uncertainty in the 
parameters. Thus, multiobjective optimization is used 
to identify such solutions and their properties 
assessed.  
 

Table 1: Agile engagement parameters 
Parameter Min Max Nominal 
VM 0 2000 - 
VT 0 2000 - 
� 0 180 - 
SR 0 100 15 
� 0 360 0 
� 0 180 0 
� 0 180 0 
� 0 360 0 
x0 -5 5 0 
y0 -5 5 0 
z0 -5 5 0 
Zdelay -10 10 0 
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Fig. 3: Random search Pk distribution. 
 
 

3. ENDGAME OPTIMIZATION 
 
The endgame is the final few milliseconds of flight 
before detonation of the warhead. In order to 
maximize the probability of a kill, the missile 
guidance system must ensure that the missile 
parameters approach those of a suitable endgame. 
Alternatively, achieving the maximum Pk given a 
limited deviation from a nominal endgame might be a 
suitable goal for a model-based predictive controller 
used in the guidance loop. The following four 
problems explore the use of AGILE as a tool for 
determining and maximizing endgame lethality. 
 
Problem 1: max Pk  
The three most significant parameters affecting the 
endgame are missile speed, VM, target speed, VT, and 
the missile-target engagement angle, η. The single 



     

objective considered is min (-Pk) and Table 2 shows 
ten examples of achievable Pk given the starting point 
{ }, ,Mi Ti iV V η . These optimizations where performed 
using the SQP algorithm in the MATLAB 
Optimization Toolbox with the remaining parameters 
set to the nominal values of Table 1. The initial sets 
are not always sensible, but demonstrate how the 
engagement geometry should be modified to improve 
potential lethality. For example the initial set {1400, 
1600, 0} represents a tail-chasing missile travelling 
slower than its target. However, given that it is 
detonated 15 m from the tail of the target, the low 
probability of kill, 0.366, arises mostly from 
fragment damage to the engine. By slowing the target 
to 1465 m s-1, increasing the missile speed to 1538 m 
s-1 and engaging at a slight incidence of 1.2°, Pk 
increases to 0.967.  
 

Table 2: Three parameter engagement geometry. 
VMi VTi ηi Pki VM VT η Pk 
750 500 90 0.619 767 300 66.8 0.912 

1000 500 90 0.418 800 322 65.7 0.906 

1000 600 90 0.441 899 400 63.3 0.885 

1300 900 60 0.494 1243 700 55 0.797 

1700 1100 30 0.45 1681 1119 24.4 0.509 

1400 1600 0 0.366 1538 1465 1.2 0.967 

1800 1200 15 0.281 1798 1201 4.4 0.922 

1000 500 0 0.607 1000 500 5.2 0.937 

1000 500 75 0.546 800 322 65.7 0.906 

1800 1300 50 0.288 1651 1100 46.9 0.681 

 
The first three endgames in Table 2 represent side-on 
engagement. In all three cases, increasing the 
difference in speed between the missile and target 
and engaging more towards tail-chase significantly 
improves Pk. Fig. 4 shows the variation in Pk with VM 
and η about the optimized set  { }, ,M TV V η  from the 
first row of Table 2 for fixed VT = 300 m s-1. 
Similarly, Fig. 5 shows how Pk varies with VT and VM 
for a fixed η = 66.8°. These two figures confirm what 
would be expected during an engagement, namely 
that maximum lethality will occur at an angle and 
missile-target speed ratio such that fragment damage 
is focused on the more vulnerable areas. 
 

 
Fig. 4: Variation in Pk for fixed VT = 300 m s-1. 
 

Figs. 6 and 7 show lethality plots for the engagement 
of the eighth row of Table 2. The plots are in quite a 
different area of the permissible engagement space 
than those of Figs 4 and 5 although the plots show 
similar characteristics. 
 
Note though that while the engagement of Fig. 4 is 
relatively insensitive to angle, that of Fig. 6 is very 
sensitive to variation in engagement angle. Thus a 
small error in engagement angle in the first case will 
result in only a small reduction in Pk, in the second 
case the same small change in η could result in Pk of 
less than 0.4. 
 
In realistic engagement problems, the target is not 
completely known and the feedback measurements 
will be imperfect. The engagement will be also 
subject to exogenous disturbances. Although these 
unknowns can be accommodated to some degree in 
the Gaussians modelling the engagement, it is also 
important to understand the sensitivity of solutions to 
parameter uncertainty.  In practise this can be 
achieved by sampling around an ‘optimal’ solution 
by, say, taking 100 samples uniformly distributed at 
random by perturbing the parameters within a 
percentage of full-scale as depicted in Fig. 8. 

 
Fig. 5: Variation in Pk for fixed η = 66.8°.  

 
Fig. 6: Variation in Pk for fixed VT = 500 m s-1. 

 
Fig. 7: Variation in Pk for fixed η = 5.2°. 



     

 
Fig. 8: Perturbation for robustness trade. 
 
Problem 2: max Pk and check for robustness 
In practise, a realistic endgame, and therefore flyout, 
is unlikely to be achievable using only{ }, ,M TV V η , 
not least because the target velocity is unlikely to be 
under the control of the missile. In this example all 
parameters in Table 1 are used and the missile’s 
controllable parameters, i.e. �, �, x0, y0,z0, and Zdelay, 
are optimized to determine suitable endgames for 
engaging targets grouped in either head-on, side-on 
or tail-chase categories, based on engagement angle.  
The same SQP used in Problem 1 is kept, and 500 
scenarios were calculated for each engagement 
category. For each scenario the optimised parameters 
are then perturbed 1000 times and the resultant 
standard deviation of Pk is recorded. 
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Fig. 9: Scatter plot of head-on engagements and 

variance (standard deviation) with 10% 
uncertainty. 

 
As can be seen in Fig. 9, a pair of scenarios with 
similar Pk’s can have varying robustness values. As 
well as maximizing Pk, it is desirable to maximize the 
robustness of the solution to uncertainty in the 
parameters Minimizing the standard deviation in the 
sample is the equivalent of minimizing loss in Pk due 
to parameter variations. Attempting to maximize Pk 
while simultaneously minimizing the standard 
deviation should result in endgames that have both a 
high probability of kill and a high-degree of 
robustness to parameter uncertainty. 
 
Problem 3: max Pk min s(Pk) using novel methods 
This problem was addressed with a multiobjective 
genetic algorithm, as described by Fonseca and 
Fleming (1998), to determine fitness on the basis of 
non-dominance of the individuals. A MOGA was 
attractive as the population-based nature of the search 

allows many endgames to be evaluated at each 
generation. The objectives used to assess the per-
formance being (i) overall Pk as used in problem 1, 
and (ii) robustness of Pk calculated as described 
above. In the example presented here, a ±10% 
uncertainty is assumed on the free parameters. In Fig. 
10 individual endgames are plotted with their Pk 
against the standard deviation in 20 samples around 
that point in{ }, ,M TV V η . Clearly, a fairly large 
number of high Pk solutions appear to offer robust 
endgame performance. 
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Fig. 10: Scatter plot showing Pk and variance in Pk 

(standard deviation) with 10% uncertainty. 
 
The trade-off between robustness and lethality is 
shown in Fig. 11 and for the lowest variance sample 
at Pk = 0.9189, s = 0.0298 the endgame is illustrated 
in Fig. 12. Improving Pk to 0.9569 results in an 
increase in variance to s = 0.25. A choice of which 
was the best Pk would have to be made on a number 
of factors including: time to endgame; precision of 
missile; and target vulnerability. The flyout to arrive 
at an endgame will also have uncertainties arising 
from the usual modelling considerations, but may 
also account for target manoeuvring. 
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Fig. 11: Trade-off between Pk and endgame 

robustness. 

 
Fig. 12: Robust endgame with Pk = 0.9189. 



     

The engagement shown in Fig. 12 has VM = 1214, VT 
= 705, η = 2.7 and achieves probabilities of kill of 
0.9048 for cockpit damage and 0.1447 for the 
fuselage. No engine or wing damage is predicted by 
AGILE. The reason that this is robust to variations in 
{ }, ,M TV V η is the relatively high vulnerability of the 
cockpit area and the coverage of fragments from the 
warhead. Such an endgame therefore exploits the 
characteristics of the missile and the target. 
 
Problem 4: max Pk min s(Pk), 

0 0 0( , , , , , , , , , , , )k M T R dP f V V S x y z Zη ω δ ε ψ=  
The same MOGA formulation employed in Problem 
3 is retained, and the uncertainty is assumed over all 
the parameters and the corresponding number of 
samples at each nominal geometry is increased to 50. 

 
Fig. 13: Pk vs. robustness trade-off, Problem 4. 
 
The Pareto optimal solutions for side-on scenarios 
found after 200 generations of 50 individuals are 
shown in the trade-off of Fig. 13. While similar 
characteristics can be observed to that of Fig. 11 
(Problem 2), in this case the search space is now 
much larger and hence the greater spread in the 
solutions.  The cross in Fig 13 identifies the endgame 
shown in Fig 14. 

 
 

Fig. 14: Engagement with good robustness.  
 
This figure shows an engagement where the missile 
is approaching fast from towards the aircraft side (VM 
= 749.91 m s-1, η = 108°) and the missile is oriented 
{δ, ε, ψ} = { 27°, 209°, -8°} with a burst point (fuze 
delay) -2 m along the missile trajectory. The overall 
Pk = 0.8 with 0.7192 cockpit, 0.08 fuselage, and zero 
engine and wing probabilities of kill. Although very 
different to Fig. 12, the endgame of Fig. 14 is robust 
in that the fragment damage to the cockpit is 

achieved when the missile is detonated within a large 
region of the ‘optimal’ point identified in Fig. 13. 

 
 

4. CONCLUDING REMARKS 
 

This paper has demonstrated how missile endgame 
conditions with a high probability of kill can be 
identified using optimization techniques against 
various performance criteria. There is not one single 
‘optimal’ engagement for a missile-target rather there 
are families of solutions that trade-off overall 
lethality with robustness to parameter uncertainty at a 
number of different condition, for example target 
speed or engagement angle. Having a better 
understanding of the location and sensitivity of 
potential engagement conditions can be readily used 
in the guidance system to enhance the overall 
efficacy of the missile which is essential if projected 
future threats are to be dealt with effectively.  The 
final choice of a suitable endgame will inevitably be 
a compromise over the criteria and will be 
determined to some degree by flyout considerations. 
However, an acceptably accurate simulation, AGILE, 
can readily and rapidly be used to determine suitable 
engagement geometries. 
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