
SEQUENTIAL CORRELATION BASED PROPAGATOR
ALGORITHM FOR RECURSIVE SUBSPACE

IDENTIFICATION

Guillaume Mercère∗,∗∗ Stéphane Lecœuche∗,∗∗∗

Christian Vasseur∗

∗Laboratoire LAGIS - Bâtiment P2, USTL - 59655 Villeneuve
d’Ascq Cedex - France

∗∗EIPC, Campus de la Malassise - BP39 - 62967 Longuenesse
Cedex -France - gmercere@eipc.fr

∗∗∗Ecole des Mines de Douai - Rue Charles Bourseul - BP 838 -
59508 Douai Cedex -France
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recursively estimate a basis of the observability matrix. Two propagator based (Munier
and Delisle, 1991) criteria are introduced. A sequential RLS algorithm is proposed to
equally minimise these cost functions. The benefits of thesenew techniques in comparison
with EIVPAST andUDPAST (Loveraet al., 2000) are emphasized with a simulation
example.Copyright©2005 IFAC.
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1. INTRODUCTION

The development of efficient recursive subspace iden-
tification methods has been an active area of research
since the end of the 90’s (Gustafsson, 1998; Lovera
et al., 2000; Mercèreet al., 2004b). The offline sub-
space identification algorithms (Viberg, 1995), which
are known to be an excellent alternative to the clas-
sical prediction error methods (Ljung, 1999), are in-
deed directly online unusable due to the application of
computationally burdensome steps such as the singu-
lar value decomposition (SVD). It was also necessary
to find SVD alternative algorithms in order to apply
the subspace concept in a recursive framework. Two
points of view were proposed to solve this problem:

• The first one consists in adapting the array sig-
nal processing Yang’s criterion (Yang, 1995) to

the recursive update of the observability ma-
trix. Several algorithms have been developed
(Gustafsson, 1998; Loveraet al., 2000; Lovera,
2003). All of them work in the presence of mea-
surement and process noises thanks to the intro-
duction of instrumental variables.

• The second one rests on the adaptation of an
other array signal processing technique: the
propagator method (Munier and Delisle, 1991).
The advantage of this approach over the previous
conception lies in the use of a linear operator and
unconstrained and unapproximatedquadratic cri-
teria which lead to easy recursive least squares
techniques (Mercèreet al., 2003).

The algorithms proposed in this paper are based on
this last concept. As any recursive subspace identifica-
tion method (cf. §2), they are made up of two stages:



• the online update of a particular vector named the
observation vector;

• the recursive estimation of the observability ma-
trix from the online update of the propagator.

However, contrary to the SVD alternative techniques
developed so far, they use a single recursive propaga-
tor estimation algorithm equally applicable whatever
the noise properties of the observation vector are. The
basis of this algorithm is found in the works of J. L. Yu
on a particular correlation-based projection approxi-
mation subspace tracking technique (Yu, 2000).

The outline of this paper is as follows: after a short
description of the analogy between recursive subspace
identification and subspace tracking in array signal
processing (cf. §2), the problem of the recursive ob-
servation vector estimation is considered in section 3
thanks to the use of specific QR factorization updates.
The recursive estimation of a basis of the observability
subspace is then proposed in section 4. Two different
quadratic criteria and a single RLS sequential algo-
rithm are more particularly developed. The perfor-
mances of this new algorithm are finally shown on a
simulation example.

2. ANALOGY BETWEEN RECURSIVE
SUBSPACE IDENTIFICATION AND SUBSPACE
TRACKING IN ARRAY SIGNAL PROCESSING

In recursive subspace identification, the goal is to
estimate online the[A,B,C,D] system matrices of the
following noisy state space representation:

x(t +1) = Ax(t)+Bũ(t)+w(t) (1a)

ỹ(t) = Cx(t)+Dũ(t) (1b)

y(t) = ỹ(t)+v(t) (1c)

u(t) = ũ(t)+ f(t). (1d)

where the noise-free inputs̃u ∈ Rnu×1 and outputs
ỹ ∈ Rny×1 are disturbed by process and measurement
white noises, respectively namedw, f andv.

In subspace tracking in array signal processing (Krim
and Viberg, 1996), the considered problem consists
in recursively determining the directions of arrival
θθθ by estimating the steering matrixΓΓΓ(θθθ ) from the
following data generation model:

z(t) = ΓΓΓ(θθθ )s(t)+b(t) (2)

wherez is the output of thenz sensors of the antenna
array,s the vector of thens signal waveforms andb the
additive noise.

When studying the main techniques developed in both
fields, it is interesting to note that the mathemati-
cal problem is the same: to track some eigencompo-
nents of particular matrices by adapting specific sub-
spaces with the last observations. Now, in array signal
processing, notable algorithms have been developed
to avoid the use of eigenvalue decomposition (Krim
and Viberg, 1996). Thus, it seems to be interesting

to adapt some of these SVD alternatives for recursive
subspace identification. For that, it is initially essential
to rewrite the state space system (1) in an equivalent
way to the model (2). This last equation contains an
output vectorz composed by spatially stacked signals.
Now, in identification, the available data are only tem-
poral observations. It is also necessary to introduce
a temporal window similar to the spatial one used in
subspace tracking:

y+
f (t) =

[
yT(t) · · · yT(t + f −1)

]T ∈ R
ny f×1 (3)

wheref > nx is a user fixed integer. It is easy to verify
the following relation1 :

y+
f (t) = ΓΓΓ f x(t)+H f u+

f (t)

+G f w+
f (t)−H f f+f (t)+v+

f (t)
︸ ︷︷ ︸

b+
f (t)

(4)

whereΓΓΓ f is the observability matrix:

ΓΓΓ f =
[

CT (CA)T · · ·
(
CA f−1)T

]T
. (5)

The connection between subspace identification and
array signal processing becomes apparent by writing:

z+
f (t) = y+

f (t)−H f u+
f (t) = ΓΓΓ f x(t)+b+

f (t). (6)

This relation stresses on both steps required to recur-
sively estimate the system matrices2 [A,B,C,D]:

(1) the update of the “observation vector”z+
f from

the noisy input output measurements:

z+
f (t) = y+

f (t)−H f u+
f (t), (7)

(2) the estimation of a basis ofΓΓΓ f from this observa-
tion vector:

z+
f (t) = ΓΓΓ f x(t)+b+

f (t). (8)

Both stages will be considered in the following sec-
tions. The observability matrix determination phase
is more precisely studied in this article. It is however
necessary to obtain an accurate estimate of the obser-
vation vector in a first step. This problem is analysed
in the next section.

3. RECURSIVE OBSERVATION VECTOR
ESTIMATION

The first stage of any recursive subspace identification
techniques lies on the observation vector estimation at
each new acquisition. The proposed approach, initially
developed by M. Lovera (Loveraet al., 2000), con-
sists in updating the QR factorization of twoMOESP
schemes: theOrdinary MOESP (Verhaegen and
Dewilde, 1992) and thePI/PO MOESP (Verhaegen,
1994). This mathematical tool indeed allows to re-
move (Viberg, 1995) the column subspace spanned

1 The stacked vectors of the input and noises are defined in the
same way thany+

f . G f andH f are two Toeplitz matrices.
2 Notice thatH f matrix is unknown at timet since the state space
matrices used in its construction are still not estimated.



by H f from the column subspace spanned by theY+
f

Hankel matrix defined as:

Y+
f (t̄) =

[
y+

f (t) · · · y+
f (t +N−1)

]
(9)

with N >> f > nx and t̄ = t + N − 1. It is also
interesting to update these decompositions at each new
input-output measurement to recursively calculate the
subtractiony+

f − H f u+
f . These update schemes are

presented in the next two subsections.

3.1 The recursiveOrdinary MOESP update

The basic idea of this approach is to consider the
QR decomposition of the offlineOrdinary MOESP
scheme and its update at each new acquisition. For that
purpose, consider the following QR factorization:

[
U+

f (t̄)
Y+

f (t̄)

]

=

[
R11(t̄) 0
R21(t̄) R22(t̄)

][
Q1(t̄)
Q2(t̄)

]

. (10)

When a new input-output couple{u(t̄ +1),y(t̄ +1)}
is acquired, this decomposition can be updated as3 :

[√
λ

[
R11(t̄) 0
R21(t̄) R22(t̄)

]
u+

f (t̄ +1)

y+
f (t̄ +1)

]




Q1(t̄) 0
Q2(t̄) 0

0 1



 . (11)

A sequence of Givens rotations (Golub and Van Loan,
1996) can then be used to annihilate the stacked input
vectoru+

f and bring back theR factor to the following
block lower triangular form:

[
R11(t̄ +1) 0 0
R21(t̄ +1)

√
λR22(t̄) z̄+

f (t̄ +1)

]

. (12)

z̄+
f is the vector obtained by modifyingy+

f in or-

der to include the information contained inu+
f and

[
RT

11 RT
21

]T
. Then, it is possible to prove that (Mercère

et al., 2004b):

z̄+
f (t̄ +1) = ±z+

f (t̄ +1). (13)

Remark 1.In practice, there is no need to updateR22.
R11 andR21 are only used to estimatez+

f . So, the theo-
retical growing size of theR factor is not a problem in
practice. The computational complexity of this partial
QR factorization update isO

((nu
2 +ny

)
nu f 2

)
.

This technique leads to unbiased estimates only if the
output measurement noisev is white and the other dis-
turbances are null. Since this condition is too restric-
tive, the development of a recursivePI/PO MOESP
update algorithm has been proposed to estimate an
asymptotically noise purged observation vector.

3.2 The recursivePI/PO MOESP update

The principle of the proposed method is based on the
same idea as in the previous paragraph i.e. updating

3 The forgetting factorλ is introduced to weight the past informa-
tions.

thePI/PO MOESPQR factorization at each time step
by applying Givens rotations. This second technique
has the advantage to treat the problem of the noise by
using suitable instrumental variables. Thus, consider
the following QR factorization:




U+
f (t̄)

ΞΞΞ(t̄)
Y+

f (t̄)



 =





R11(t̄) 0 0
R21(t̄) R22(t̄) 0
R31(t̄) R32(t̄) R33(t̄)









Q1(t̄)
Q2(t̄)
Q3(t̄)



 (14)

whereΞΞΞ =
[

U−
p

T Y−
p

T
]T

in thePO scheme andΞΞΞ =

U−
p in thePI scheme with4 :

U−
p (t̄) =

[
u−

p (t) · · · u−
p (t +N−1)

]
(15)

Y−
p (t̄) =

[
y−p (t) · · · y−p (t +N−1)

]
(16)

u−
p (t) =

[
uT(t − p) · · · uT(t −1)

]T
(17)

y−p (t) =
[
yT(t − p) · · · yT(t −1)

]T
. (18)

When new input-output data are available, this decom-
position can be updated as:




√

λ





R11(t̄) 0 0
R21(t̄) R22(t̄) 0
R31(t̄) R32(t̄) R33(t̄)





u+
f (t̄ +1)

ξξξ (t̄ +1)
y+

f (t̄ +1)











Q1(t̄) 0
Q2(t̄) 0
Q3(t̄) 0

0 1







(19)
with ξξξ (t̄ + 1) = u−

p (t̄ + 1) for the PI MOESP ver-

sion andξξξ (t̄ +1) =
[

u−
p

T
(t̄ +1) y−p

T
(t̄ +1)

]T
for PO

MOESP. Givens rotations are then used twice to update
this factorization. They are first applied to put the
elements ofu+

f (t̄ +1) at zero:




R11(t̄ +1)
R21(t̄ +1)
R31(t̄ +1)

0
√

λ
[

R22(t̄)
R32(t̄)

0
0

R33(t̄)

]
0

¯̄z−p (t̄ +1)
¯̄z+

f (t̄ +1)



 . (20)

A second sequence of Givens rotations is then em-
ployed to annihilatē̄z−p (t̄ +1) and leads to:





R11(t̄ +1) 0 0 0
R21(t̄ +1) R22(t̄ +1) 0 0
R31(t̄ +1) R32(t̄ +1)

√
λR33(t̄) ¯̄̄z+

f (t̄ +1)



 .

(21)
By following the proof given §4.1 in (Mercèreet
al., 2004b), it is possible to show that:

z+
f (t̄ +1)z+

f
T
(t̄ +1) =

¯̄z+
f (t̄ +1) ¯̄z+

f
T

(t̄ +1)− ¯̄̄z+
f (t̄ +1) ¯̄̄z+

f
T
(t̄ +1). (22)

The estimated matrix̄̄z+
f

¯̄z+
f

T − ¯̄̄z+
f

¯̄̄z+
f

T
is in fact as-

ymptotically rid of the noise effects. Then, it is possi-
ble to update, at each step, the noise free observation
covariance matrix:

Rz̃+
f
(t̄ +1) = λRz̃+

f
(t̄)+

¯̄z+
f (t̄ +1) ¯̄z+

f
T

(t̄ +1)− ¯̄̄z+
f (t̄ +1) ¯̄̄z+

f
T
(t̄ +1). (23)

4 N >> p > nx.



Remark 2.As previously, there is no need to totally
complete thePI/PO MOESP QR factorization in
practice. The complexity of this update technique is

however larger:O
((

nu f+nξ
2 +ny f

)(
nu f +nξ

))

.

4. RECURSIVE UPDATE OF THE
OBSERVABILITY MATRIX

In the previous section, it has been shown it is possible
to update the observation vector by two different ways
according to the hypotheses on the disturbances acting
on the system. From now on, consider the most impor-
tant step in recursive subspace identification: the re-
cursive estimation of the observability matrix. Like in
(Gustafsson, 1998; Loveraet al., 2000; Lovera, 2003),
it is proposed to exploit the close relationship between
array signal processing and subspace identification to
suggest efficient SVD alternatives. Since the recur-
sive identification algorithms based on the propagator
(Munier and Delisle, 1991) have shown several ad-
vantages compared with the algorithms adapted from
PAST (Mercèreet al., 2003; Mercèreet al., 2004a),
the approach analysed in this article rests on the prop-
agator concept. The aim of this section consists more
precisely in developing a single recursive algorithm
able to minimise two different quadratic criteria. In
order to introduce this algorithm, it is first of all nec-
essary to give a brief overview of the propagator prin-
ciple in the identification framework.

4.1 Overview of the propagator method

Assume that the studied system is observable. Since
ΓΓΓ f ∈ Rny f×nx with ny f > nx, ΓΓΓ f has at leastnx rows,
gathered in a submatrixΓΓΓ f1, linearly independent.
Then, the complementΓΓΓ f2 of ΓΓΓ f1 can be expressed
as a linear combination of thesenx rows. So, there
is a unique linear operatorPf ∈ Rnx×(ny f−nx) named
propagator (Munier and Delisle, 1991) defined as:

ΓΓΓ f2 = PT
f ΓΓΓ f1. (24)

Furthermore, it is easy to verify that:

ΓΓΓ f =

[
ΓΓΓ f1
ΓΓΓ f2

]

=

[
ΓΓΓ f1

PT
f ΓΓΓ f1

]

=

[
Inx

PT
f

]

ΓΓΓ f1 = EoΓΓΓ f1. (25)

Thus, sincerank
{

ΓΓΓ f1

}
= nx,

Imcol{ΓΓΓ f } = Imcol{Eo}. (26)

This last equation implies that it is possible to get an
expression of the observability matrix in a particular
basis by determining the propagator. This operator
can be estimated from the equation (8). Indeed, after
having applied a data reorganization so that the first
nx rows ofΓΓΓ f are linearly independent, the following
partition can be introduced:

z+
f (t) =

[
z+

f1
(t)

z+
f2
(t)

]

=

[
Inx

PT
f

]

ΓΓΓ f1x(t)+

[
b+

f1
(t)

b+
f2
(t)

]

(27)

wherez+
f1

andz+
f2

are the components ofz+
f respec-

tively corresponding to thenx rows ofΓΓΓ f1 et ny f −nx

rows of ΓΓΓ f2. In the ideal noise free case, it is easy to
show that:

z+
f2

= PT
f z+

f1
. (28)

In the presence of noise, this relation holds no longer.
An estimate ofPf can however be obtained by min-
imising the following cost function:

J(Pf ) = E
∥
∥
∥z+

f2
−PT

f z+
f1

∥
∥
∥

2
. (29)

Unfortunately, even if the noise is spatially and tempo-
rally white, the estimate ofPf is biased. Indeed, since
the asymptotic least square estimate ofPT

f is given by:

P̂T
f = Rz+

f2
z+

f1
R−1

z+
f1

(30)

with 5 :

Rz+
f2

z+
f1

= PT
f ΓΓΓ f1RxΓΓΓT

f1 +Rb+
f2

b+
f1

(31)

Rz+
f1

= ΓΓΓ f1RxΓΓΓT
f1 +Rb+

f1
, (32)

the estimate ofPT
f verifies in the white noise case:

P̂T
f = PT

f ΓΓΓ f1RxΓΓΓT
f1

(
ΓΓΓ f1RxΓΓΓT

f1 + σ Inx

)−1
(33)

which is not equal toPT
f . Now, since in most of the

practical situations the data are disturbed by noise, it is
essential to propose other criteria in order to circum-
vent this difficulty. Two solutions can be considered
according to the properties of the observation vector:

• If the observation vector is estimated from the
recursivePI/PO MOESP update scheme (cf.
§3.2) and since6 :

Rz̃+
f

=

[
Rz̃+

f1
Rz̃+

f1
z̃+

f2

Rz̃+
f2

z̃+
f1

Rz̃+
f2

]

=

[
Rx̄ Rx̄Pf

PT
f Rx̄ PT

f Rx̄Pf

]

(34)
with x̄ = ΓΓΓ f1x, then:

P̂T
f = Rz̃+

f2
z̃+

f1
R−1

z̃+
f1

= PT
f . (35)

This estimate is determined by minimising the
following criterion:

J̆(Pf ) =

∥
∥
∥
∥

Rz̃+
f2

z̃+
f1
−PT

f Rz̃+
f1

∥
∥
∥
∥

2

F
. (36)

• If the observation vector is estimated from the re-
cursiveOrdinary MOESP update scheme and
since this estimate is biased if, for instance,v
is not white, an instrumental variable must be
introduced in the criterion (29) so as to make it
applicable even if coloured disturbances act on
the system (Mercèreet al., 2003):

JIV (Pf ) =

∥
∥
∥
∥
Rz+

f2
ξξξ −PT

f Rz+
f1

ξξξ

∥
∥
∥
∥

2

F
. (37)

5 Rab is the cross correlation matrix ofa and b. Ra is the auto
correlation matrix ofa.
6 the recursivePI/PO MOESP update scheme leads to an asymp-
totically noise free observation covariance matrix.



ξξξ ∈ R
nξ×1 (nξ ≥ nx) is the instrumental variable

assumed to be uncorrelated with the noise but
sufficiently correlated with the state vectorx.

The cost functions (36) and (37) can be minimised by
different ways. Several algorithms have been devel-
oped to estimatePf from the criterion (37) accord-
ing to the number of instruments inξξξ (Mercèreet
al., 2003; Mercèreet al., 2004b). It is however impor-
tant to note that both criteriaJIV andJ̆ have the same
structure. It would be interesting to develop a single al-
gorithm which is able to minimise both cost functions.
This one is introduced in the following subsection.

4.2 A single algorithm to recursively estimate the
propagator: the sequential correlation based propaga-
tor method

Consider the following generalised criterion:

J̄ = (Pf ) =
∥
∥R2−PT

f R1
∥
∥

2

F
(38)

whereR2 and R1 are respectivelyRz+
f2

ξξξ and Rz+
f1

ξξξ

whenJIV is taken into account andRz̃+
f2

z̃+
f1

andRz̃+
f1

when J̆ is considered. It is then possible to minimise
this criterion by taking inspiration in the works of
J. L. Yu (Yu, 2000) on thePAST algorithms (Yang,
1995) in array signal processing. This author proposes
to estimate the signal subspace by minimising the
following cost function7 :

V(W) =
∥
∥R−WWTR

∥
∥

2
F (39)

by sequentially minimisingnz criteria defined as:

Vi(W(t)) =
t

∑
k=1

λ t−k
∥
∥r i(k)−W(t)WT(t)r i(k)

∥
∥

2

(40)
wherer i is the ith column ofR. According to J. L.
Yu (Yu, 2000), this sequential procedure converges
towards the global minimum of (39) (which is equal to
UsT whereUs contains thens dominating eigenvectors
of R andT is an arbitrary unitary matrix) when the
noiseb (cf. equ. (2)) is spatially and temporally white.

In our case, since we respectively consider that:

• either a noise free estimateRz̃+
f

can be obtained

• or an instrumental variable is introduced to anni-
hilate the noise effect,

the following criteria J̄i , i ∈ [1,nc], can be used to
estimate the propagator:

J̄i(Pf (t)) =
t

∑
k=1

λ t−k
∥
∥r i

2(k)−PT
f (t)r

i
1(k)

∥
∥

2
. (41)

r i
2 and r i

1 are the ith column of R2 and R1. nc is
the number of columns ofR1. Since these cost func-
tions are directly quadratic inPf , each of them can

7 W ∈ Cnz×ns andR is the covariance matrix of the observations.

be minimised by a recursive least squares procedure
(Ljung, 1999):

K(t) =
r i

1
T
(t)L(t −1)

λ + r i
1

T
(t)L(t −1)r i

1(t)
(42a)

L(t) =
1
λ

(
L(t −1)−L(t−1)r i

1(t)K(t)
)

(42b)

PT
f (t) = PT

f (t −1)+
(
r i

2(t)−PT
f (t −1)r i

1(t)
)

K(t).
(42c)

The extraction ofr i
1 et r i

2 can be realised as:

i = remainder(t,nc)+1 (43a)

r i
1(t) = R1(1 : nx, i)(t) (43b)

r i
2(t) = R2(nx +1 : ny f , i)(t). (43c)

The computational complexity of this minimization
technique isO

(
nξ ny f

)
or O

(
n2

y f 2
)

depending on
the considered criterion (resp.JIV and J̆). Other re-
cursive subspace identification methods have similar
complexities (Loveraet al., 2000).

Thus, a single minimization algorithm can be applied
to two different cost functions in order to recursively
estimate the propagator. Associated with the corre-
sponding recursiveMOESP update schemes, two new
algorithms, namedCOPM andCOIVPM, can then be
proposed (cf. fig. 1).

Recursive
Ordinary MOESP

update
+

Sequential
correlation based

propagator method

Recursive
PI/PO MOESP

update
+

Sequential
correlation based

propagator method

COIVPM COPM

Fig. 1.COPM andCOIVPM algorithms

5. SIMULATION EXAMPLE

In this section, a simulation example is proposed to
show the performances of the developed algorithms.
For that, consider the following 4th order system:

x(t +1) =






0.85 −0.4 0.52 0.3
0 −0.93 −0.75 −0.7
0 0 0.95 −0.4
0 0 0 0.81




x(t)+






0 0
0 −0.86

0.75 0
0.6 0.3




 ũ(t)

y(t) =

[
0.7 −0.8 0 0.6
0 0 1.5 −0.5

]

x(t)+

[
0.3
0.27

]

v(t)

u(t) = ũ(t)+ f(t)

whereũ, v and f are three independent white noises
with respective variance 1, 0.1 and 0.01. The con-
struction parameters are chosen as:

f = p = 10 (44)

λ (t) = λ0λ (t −1)+1−λ0 (45)

with λ0 = λ0 = 0.995 andλ f inal = 0.999. The initial
state space matrices are randomly generated.

In order to stress on the benefits of theCOPM and
COIVPM algorithms, it is interesting to compare them
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Fig. 2. Comparison of the estimated eigenvalues ob-
tained withCOIVPM andEIVPAST
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Fig. 3. Comparison of the estimated eigenvalues ob-
tained withCOPM andUDPAST

to other methods which have already shown their ef-
ficiency. The chosen techniques for this comparison
are EIVPAST and UDPAST (Lovera et al., 2000).
These one respectively use theOrdinary MOESP
update and thePI/PO MOESP update schemes for
the observation vector estimation step. An easy way to
verify the accuracy of the estimated models consists
in comparing the estimated poles obtained with the
recursive identification algorithms with the theoretical
one i.e. 0.95, 0.85, 0.81 and−0.93. This comparison
is illustrated in figures 2 and 3. A zoom on the three
largest poles is proposed. These curves clearly show
that, contrary toEIVPAST andUDPAST, COPM and
COIVPM are able to consistently estimate and distin-
guish close poles in a noisy environment.

6. CONCLUSION

Based on theOrdinary MOESP and on thePI/PO
MOESP uptade schemes, two new recursive subspace
identification methods respectively calledCOPM and
COIVPM have been presented. These methods have in
common to share a single algorithm to recursively es-
timate a basis of the observability subspace. The per-
formances of these algorithms have been highlighted
on a simulation example.
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