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Abstract: We present in this article an identification and signal processing of weight 
sensors. The dynamical modeling of these sensors is nonlinear and can be described in the 
state space representation by a bilinear algebraic structure. This system can be 
transformed by local diffeomorphisms by using an elimination method. The identification 
process is based upon a projection of experimental data in the Sobolev  space (C( )kH Ω k 
spline approximation). The experimental results show the good accordance of our 
projection with the real response of the sensor.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Weight sensors generally use mechanical transducers 
which transpose weight in a displacement variable 
measured by an electronic device. We can quote for 
example technologies based on strain gauge, 
mechanical resonators, optical interferometer or 
tunneling effect. These mechanical transducers must 
be generally designed in order to be deterministic (no 
random or stochastic effect), and to avoid dynamical 
and/or nonlinear effects. In spite of this expensive 
design over a given threshold of precision; creep, 
relaxation and thermal dilatation of these mechanical 
transducers modify strongly the measure limiting in 
the same way the precision of these technologies. 
One way to overcome this problem is to model these 
phenomena in order to create an appropriate signal 
processing of the measure. This new approach has 
the advantage of studying these behaviors with as its 
final goal, the design of inexpensive and precise 
mechanical transducers. In this way we have studied 
two different technologies; a strain gauge resistor 
one, and a mechanical resonator one (Rouff, et al., 
1992).  
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These two technologies like the others are limited in 
precision by the creep and relaxation of the metallic 
transducers, and usually it is not possible to obtain 
without compensations a precision better than 10-2. 
To overcome this fundamental limitation of this kind 
of technology, numerical corrections for the 
electronic responses of the sensors are needed. Two 
steps of numerical corrections can be considered; a 
static one which involves algebraic equations on the 
measure itself, to compensate the nonlinear static 
responses of the measured weight versus deformation 
or displacement and the thermal fluctuations at low 
frequencies (Rouff and Konieczka, 1993). These 
techniques can be generally used up to a precision of 
10-3. Further advances in precision pass through a 
dynamical correction, i.e., the analysis of the 
temporal response of the sensor. In fact for precisions 
over10-4 it is difficult to define the measure itself, 
because the temporal response of the sensor is not 
asymptotically constant but logarithmic, which poses 
the mathematical problem of the measure definition. 
The solution of the problem, which first and foremost 
goes  through a nonlinear deconvolution process, 
supposed a complete dynamical modelling of the 
sensor. This technique leads to a precision better than 
10-5. Clearly these systems are nonlinear and this 
dynamical modelling approach began by a black box 
approach by using bilinear formalism (Zhang, 1993). 
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The plan of the paper is as follows. Section 2, is 
devoted to presenting a review of some control 
theory. Section 3 presents the elimination process for 
general bilinear systems. The identification process 
using Ck spline functions is formalized in Section 4. 
Section 5 presents experimental identification of 
weight sensors. Finally, the paper ends with 
concluding remarks in section 6. 
 
 

2. REVIEWING SOME CONTROL THEORY 
 
 
2.1 Notion of Equivalence 
 
Let us consider a general system description of the 
form 
 
 (2) ( ) (2) ( )( , , ,..., , , , ,..., ) 0k lP ω ω ω ω η η η η =  (1) 
 
where are called the external variables (also 
called input-output variables),  are called 
latent variables, and P is a nonlinear 

nω ∈
Sη ∈

∞ function 
defined from . n S r+ ⎯⎯→
 
The system (1) is generally called an external 
differential system, and the latent variables can be 
state, partial state or other characteristic variables of 
some behavior of the system. Two external 
differential systems as (1) are called equivalent if the 
set of trajectories that they allow for the external 
variables are the same.  
 
2.2 The Elimination and Realisation Formalism 
 
Let us consider a differential system in its general 
state space representation 
 
  (2) ( , , )q F q u t=
  ( , , )y h q u t=
 
where q is the state vector of dimension N, u is the 
input control vector of dimension m, t is the time 
variable, and F and h are two  functions defined 
from  and from , 
respectively. 

∞

1N m N+ + ⎯⎯→ 1N m r+ + ⎯⎯→

 
Let us consider the following differential system, 
depending only on the input-output variables and the 
time variable 
 
  (3) ( ) ( )( , ,..., , , ,..., , ) 0N kS y y y u u u t =
 
where y, u, t, N are defined as in (2) and S is a ∞  
function defined from . 1N m r+ + ⎯⎯→
 
For a given differential system like (2), the 
elimination problem consists of finding its equivalent 
(in the sense defined in II. A) in the form by (3). 
Inversely, the realisation problem can be also defined 
as for a system like (3) to find its suitable equivalent 
in (2). 
 
 
 
 
 

3. THE ELIMINATION PROCESS FOR GENERAL 
BILINEAR SYSTEMS 

 
Let 

  (4) 
1

m

i i
i

q Aq u B q Cu
=

= + +∑
 y Dq Eu= +  
 
be a generalized bilinear system, where q is the state 
vector of dimension N, u is the control vector of 
dimension m ( is the i-th coordinate of u), y is the 
output vector of dimension r and 

iu

1 2, , ,..., , , ,mA B B B C D E  are m+4 matrices of dimension 
N N× , N N× , …, N N× , N m× , , and rr N× m× , 
respectively. These m+4 matrices can be time 
dependent and/or parametrised. 
 
By eliminating 2 or 3 suitable matrices, it is easy to 
find, from (4), a classical bilinear or linear system. 
Our elimination procedure consists of finding, from 
(4), its equivalent, in the following form 
 

 ( ) ( )
00

0
( , ,..., ) ( , ,..., )

iN
k ks

is si
i

d yQ u u u Q u u u
dt=

=∑  (5) 

 
for [1, ]s r∈ , where 00 0 1, , ,...,s s s NsQ Q Q Q  are  
rational functions of . For any of the 
specified parameters and/or the time variable t, the 

 are defined from , for  and 
by 

( 2r N∗ + )
( ), ,..., ku u u

iQ 1k m r+ + ⎯⎯→ [0, ]i N∈

 
( )

' (

( , ,..., , )
( , ,..., , )

k
is

is k
is

P u u u tQ
P u u u t

= )  (6) 

 
for [0, ]i N∈ . isP  and are  
polynomials of order N, at most, of the variables 

. 

'
isP 2 ( 2r N∗ ∗ + )

( ), ,..., ku u u
 
 

4. IDENTIFICATION PROCESS USING CK 
SPLINE FUNCTIONS 

 
The process identification is obtained through the 
following steps 

- Projection of experimental data in K-
Sobolev space (Ck spline approximation), 

- Identification of a bilinear system 
- Estimate the residual (validity test results)  

 
 
4.1 Brief Description of Ck Spline Functions 
 
Ck spline functions expansions have the remarkable 
property that for a considered function, the 
coefficients of its Ck spline functional expansion are 
only the set of all the derivatives (partial or total) up 
to k at each point of discretization on the open set Ω . 
This means that we can include in the ( )kH Ω , the 
Sobolev space on Ω , generated by Ck spline 
functions, the set of all the differential constraints, 
value conditions and boundary conditions as simple 
exact algebraic relations. 
 
This implies that for a given process the algebraic 
inclusion of the various differential invariants leads 

     



to rebuild the functional space  in a well 
defined appropriate functional space (or manifold), 
specific to the given process. 

( )kH Ω

 
In this way, Sobolev spaces generated Ck spline 
functions, can be compared for nonlinear differential 
equations, to Fourier space in which all linear 
differential equations are represented as algebraic 
relations of frequencies. Moreover, algebraic 
properties of Ck spline functions allow us to 
introduce sophisticated and efficient algorithmic 
formulations of the classical nonlinear differential 
problems. 
 
Let us consider a one-dimensional open set 
composed by I+1 nodes, respectively, 

Ω

00 01 0( 1) 0, ,...., ,I Ix x x x− , we have 

00 0] , [Ix xΩ =  

0( 1) 0( 1)] ,i i ix x [ω − +=  

( 1) 0 0( 1)] , [i i i ix xω ω + +∩ =  

for  and with [1, 1]i I∈ − 0 00 01] , [x xω =  and 

0( 1) 0] , [I I Ix xω −= . According to reference [1], the set of 
Ck spline functions defined on Ω  is a set of 2I(k+1) 
polynomial functions define as follows 
 

2 1
,

0

( )
jk

k
i Rj

j

x i xS x a
x

ν ν
+

=

− ∆⎛ ⎞= ⎜ ⎟∆⎝ ⎠
∑ ,   0 0( 1)] , [i ix x x +∀ ∈

2 1
,

0

( )
jk

k
i Lj

j

x i xS x a
x

ν ν
+

=

− ∆⎛ ⎞= ⎜ ⎟∆⎝ ⎠
∑ ,  0( 1) 0] ,i i[x x x−∀ ∈  

 
with x∆  the distance between two nodes and ,Rj Lja aν ν , 
2(2k+1)(k+1) constants. Each spline ,k

iS ν  is 
associated to an open subset iω  of Ω  and satisfies 
the following relation 
 

0

,

[ ] [
j

l k
i
l

x x

d S l i j
dx

ν

δ ν δ
=

= − − ]  

with ,k
iS ν  the thν  component of the spline of order k 

defined on the open subset iω , δ  is the Kronecker 
symbol. For more details see (Rouff, 1996). 
 
 
4.2 Identification Process 
 
The dynamical modeling of weight sensors presented 
in this article is described in the state space 
representation by a bilinear algebraic structure, for 
our application, we suppose that the input of the 
system is an expansion of Heaviside functions, i.e., 
that measuring load are constants by pieces in time, 
this is the typical behavior of weighing machines, in 
this case we have . Then and (2) ( )....... 0ku u u= = = isQ

00sQ  depends only on u. Equation (5) can be written 
as 
 

     

   
0

jN

j j
j

d ya
dt=

=∑ c  (7) 

 
where a and c are the parametrised real constants. 
 

Our identification program is based upon this 
relationship. According to (5), the relations between 

ja  and c and the input are given by polynomial 
systems 
 
We consider the projection of (7) in a k Sobolev 
space of k time continuous and derivable real signals 
on [0,T], the vectorial presentation of y in Sobolev 
space is defined as 
 

   

0
0
1
0
2
0

0
0
1

1

0

.

.

.

.

.

m
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y
y
y

y
y

y
y

y
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ν

ν

ν

=  (8) 

 

jyν  for [0, ]sj N∈  with sN  the points number on 
[0,T], [0, ]kν ∈  is the thν  value of the temporal 
derivative of y at the discretization point on [0,T] thj
 
We have in the real space the following relations : 
 

   ,

0 0
( ) ( )

N k
k

j j
j

y t y S tν ν

ν= =

= ∑∑

   (9) ,

0 0
( ) ( )

N k
k

j j
j

u t u S tν ν

ν= =

= ∑∑
with  is the , ( )k

jS tν thν kC  spline function and j is the 
discretization index. 
 
The k associated canonical topology is inducing by 
the following distance 

  
2

0
0

( , )
k T d x d yd x y dt

dt dt

ν ν

ν ν
ν =

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑∫           (10) 

 
For our computer programming, we have chosen the 
simplified distance defined as 
 

[ ]
2

0
( , ) ( ) ( )

T
d x y x t y t dt= −∫  

Let us consider 

                      (11) 
0

N
j

j
j

a y c
=

=∑ O

the representation  of (9) in the Sobolev space, jO  is 
iterative temporal derivative operator.  thj

 
The identification principle leads to minimize the 

distance between  and c. 
0

N
j

j
j

a
=

∑ O y

Taking into account the known experimental data y 
and u, we choose the ja  coefficients in order to 

minimize the distance between  and c. 
0

N
j

j
j

a
=

∑ O y



 
 
4.3 Validity Test Results 
 
In this case, our algorithm leads to minimize the 
following residual  eℜ
 

     

ν ⎤
⎥
⎦

0

2

( ) , ,

0
0 0 0 0 0

( ) ( )k

N M k M kT n k
e n j j j j

n j j

a y S t c u S t dtνν ν

ν ν= = = = =

⎡
ℜ = −⎢

⎣
∑∑∑ ∑∑∫  (12) 

 
it can be written as 
 

2

( ) , ,

0
0 0 0 0

( ) ,

0 0

2 ( ) ( )

                                               ( )                  

k

i

k

M k M kT n k
a e i j j j j

j j

M k
n

j j
j

a y S t c u S t

y S t dt

νν ν ν

ν ν

νν

ν

= = = =

= =

⎡ ⎤
∇ ℜ = −⎢ ⎥

⎣ ⎦

∗

∑∑ ∑∑∫

∑∑
,

( ) , 1 ( ) , 21 2
1 2 1 201 0 2 0

1 0 2 0

,
1 2 , 1 , 2
1 2 1 201 0 2 0

1 0 2 0

2 ( ) ( )

     2 ( ) ( ) 0

k k

M k k T i i
i j j j j

j j

M k k T k k
j j j j

j j

a y u S t S t dt

c y u S t S t dt

ν νν ν

ν ν

ν ν ν ν

ν ν

= =
= =

= =
= =

=

− =

∑ ∑ ∫

∑ ∑ ∫
 

We solve this problem by a linear system. 
 
    (13) 

ia e∇ ℜ =

 
This equation leads to the following linear system 
 

0

1

, , , 1 2
1 0 2 0 1, 2 1 2
1 0 2 0 1, 2

. . . . .

. . . . .

.
. . . .

. . . . .

. . . . .

M k M k l c
j j j j j j

i

N

a
a

M y u
a

a

ν ν

ν ν ν ν

= =
= =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

=⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑  

 
 

, , 1 2
1 0 2 0 1, 2 1 2
1 0 2 0 1, 2

. . . .

. . . .

. . . .

. . . .

. . . .

M k M k l
j j j j j jc N y uν ν

ν ν ν ν

= =
= =

∑ ∑

.

.
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with  
( ) , 1 ( ) , 2,

1, 2 1 2
1, 2

( ) ( )k kl cl c
j j j jM S t S tν ν

ν ν

=  

c is the row and column index of the matrix defined 
above and  

( ) , 1 , 2
1, 2 1 2
1, 2

( ) ( )kll k
j j j jN S t S tν ν

ν ν

=  

is the  temporal derivative of thl 1ν component of Ck 
spline of j1 point. By writing the equation mentioned 
above in its matrix form, we have 
   a bM A M⋅ =  (14) 
If the matrix aM is invertible, then we have the 
solution of the vector A with  0 1 2( , , ,...., )T

NA a a a a=

 
 
 
 
 

5. EXPERIMENTAL IDENTIFICATION AND 
SIGNAL PROCESSING OF WEIGHT SENSORS 

 
 
5.1 Presentations of the sensor and Experimental 
System 
 
In this paper we present the identification results of 
the only gauge strain sensor (Fig. 1). 
 

 
 
Fig. 1. Presentation of the experimental strain gauge sensor 

 

 
 
Fig. 2. Schematic representation of the deformation of the 

mechanical transducer used in the technology of the 
weighing machine 

 
In these figures we can find the action of the weight 
as localized forces applied to the transducer and the 
strain gauge sensors. This strain gauge sensor uses 
the deformation of a parallelogram mechanical 



transducer of aluminium alloy, with four strain gauge 
sensors placed as shown in Fig. 2. These four strain 
gauge sensors are used in wheastone bridges in order 
to improve the sensitivity of the system. 
 
We have used an experimental system Fig. 3. 
composed by a high sensitivity thermal box which is 
able to maintain the temperature of the sensor at a 
fixed value with 0.1 °C of uncertainty, high 
sensitivity electronic measure (10-9) and a 
mechanical device of automatic loading of the tested 
weighing sensors. All these experimental devices are 
controlled by computer in order to plan long term 
automatic identification process. 
 

 
 
Fig. 3. Experimental System. 
 
 
5.2 Identification Results 
 
In our case, we have used the Ck spline functions. In 
order to obtain an experimental data projection in a 
K-Sobolev space we define the following 
approximation with k=3 (equation 9): 
 

{ }3,0 (1) 3,1 (2) 3,2 (3) 3,3

0

( ) ( ) ( ) ( ) ( )
Ns

i i i i i i i i
i

f t f t S f t S f t S f t S
=

= + + +∑  

 
The Fig. 4. shows the comparison of our projection 
(in continuous and regular line) with the time 
response of our weighing sensor (the noisy signal), 
for a weight of 3 kg at 25 °C. We can easily see how 
well our projection  corresponds to the real response 
of the sensor.  
 

 
 
Fig. 4. Real and estimated time responses of our weighing 

sensor 
 
The dynamical modeling of weight sensors is 
described in the state space representation by a 
bilinear algebraic structure, for our application, we 

suppose that the input of the system is an expansion 
of Heaviside functions, in this case we have the 
Equation (7) can be written as 
 

0
1

jN

j j
j

d ya
dt=

=∑  

For our identification, N=4, the differential equation 
which presents the creep behavior defined as 
 

3 4
0 1 2 3 4' ''a y a y a y a y a y 1+ + + + =  

 
Figures. 5-9 give the parameter variations 
{ }0 1 2 3 4, , , ,a a a a a  of our identification process for 
creep behavior. The abscissa is in Kilogram 
 

 
 
Fig. 5. Variation of  parameter 0a
 

 
Fig. 6. Variation of  parameter 1a

 

 
 
Fig. 7. Variation of  parameter,  2a
 

     



 
 
Fig. 8. Variation of  parameter 3a

 
 
Fig. 9. Variation of  parameter 4a
 
The validity test results of our identification are 
defined by the residual equation 12. 
 
The residual results are given in table. 1. These 
residuals show that the models are in good 
accordance with the experimental data and can be 
used for these kind of sensors to correct creep and 
relaxation processes. 
 

Table 1 The residuals Results

     

 
Kilogram  Residual 
1   0.000045358247442 
2   0.000039089867331 
3   0.000039453085677 
4   0.000011964371113 
5   0.000027456429087 
 
 
 

6. CONCLUSION 
 
In this article we have presented an identification and 
signal processing in order to correct creep and 
relaxation for the technology of strain gauge force 
and weight sensors. These results depend strongly on 
the design and on the technology used by the 
considered force and weight sensors. For the 
technology presented in this paper, we have shown 
that creep and relaxation can be modelled with a 
sufficient precision to improve this technology. This 
opens the way to the framework of intelligent sensors 
and to the design of inexpensive mechanical 
transducers for these kind of weight sensors. 
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