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Abstract: This paper presents an innovative H∞ robust controller PID with parametric 
approach. The non-linearity uncertainties, the time-varying system and other 
parameters’ variations are taken into account in its design. Furthermore, this type of 
controller (of low order) is frequently used for industrial purposes due to its simplicity 
and straightforward implementation in comparison with the high order controllers that 
H∞ technique yields. The goodness of this kind of controller for robotics systems has 
been tested in a 3-dof laparoscopic surgery robotic arm. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Robotics has attracted an ever-increasing number of 
control res earchers in the last twenty years, producing 
a visible cross-fertilization between the two fields. As 
automation becomes more prevalent in medicine it 
should be clear that the traditional PID is no longer a 
satisfactory means of control in many situations. 
Optimum performance for operations seems more 
convenient for the surgeon. Then, lastly, robotics 
systems are used for interventions as laparoscopic 
(Krupa, et al., 2003), physiotherapy (Richardson, et 
al., 2004), etc. This type of systems demands the use 
of such approaches as robust control (Koo, et al., 
1994), adaptive control (Craig, et al., 1987; Egeland, 
et al., 1994), intelligent control (Kang, 1998) and the 
like. 
 
Recently it is widely used the robust control that 
needs usually a fixed controller design to satisfy 
stability and performance specifications over given 
range of uncertainty. This control approach is 
important in robotics engineering because a robotics 
system has very strong nonlinear characteristics (error 

models, several operating points, not to take into 
account the actuators dynamics, high frequencies and 
other internal/external disturbances) and, often, 
contains variable system parameters (masses, loads 
and frictions) in a real environment. The robust 
control presents two approaches: the parametric 
(Bhattacharyya, et al., 1995) and the non-structured 
(Skogestad, et al, 1997). Although uncertainty model 
is better known in the first case, control is less 
conservative in the second one. The main motivation 
to use robust control with a parametric approach has 
been the possibility of designing a PID (of low order) 
even when the model has a higher order. Despite this 
methodology does not capture the uncertainty too 
much detailed (unstructured), it provides an allowable 
set of controllers to choose the more suitable to obtain 
the desired specifications. 
 
The paper is distributed as follows1. In Section 2 the 
robotics system and the dynamic modeling are 
described; in Section 3 an H∞ robust controller with 
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parametric approach design will be presented showing 
the uncertainties dues to the non-linearity of the robot 
dynamic, in this case the actuators dynamics and high 
frequencies have not been taken into account. Some 
interesting results are showed in Section 4. 
 
 

2. PROBLEM DESCRIPTION 
 
The robotic system consists on a three-link rigid 
manipulator which has been developed at the 
Robotics System Laboratory in the Technical 
University of Catalonia, UPC, (Amat, 2001). The 
system includes a 3-dof (degree-of-freedom) 
industrial robot specifically designed for laparoscopic 
surgery. The arm holds a video camera in order to 
accomplish the robot objective: to follow the end of 
any tool the surgeon would like to track inside an 
abdomen. An industrial PC contains the video 
acquisition card and the analog input/output card to 
supply current to the robot actuators and position 
sensors reading. Fig. 1 shows the system 
configuration of this manipulator, (Dot and Pujol, 
2004), in a laparoscopic surgical trainer. 
 

 
Fig. 1. System configuration. 
 
 
2.1. Dynamic Complete Model 
 
The complete physics of manipulators can be 
classified into two categories: cinematic and dynamic 
modeling. Both the cinematic and dynamic modeling 
rely on an accurate knowledge of a number of 
constant parameters characterizing the mechanical 
structure, such as link lengths, masses and inertial 
properties. The cinematic modeling of a manipulator 
concerns the description of the motion of the 
manipulator with respect to a fixed reference frame by 
ignoring the forces and moments that cause the 
actuators. 
 
The system model consists of a complete model that, 
accurately and globally, describes the dynamics of the 
laparoscopic robot. According to the constrained 
Lagrange-Euler theory and neglecting the friction 
vector, the robotic system can be expressed as  
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where τ  are the applied torques, nq ℜ∈  consists on 
the joint variables (the generalized coordinates), 

nq ℜ∈&  is the generalized velocity, nq ℜ∈&& is the 

acceleration, nnqM ×ℜ∈)(  is the generalized moment 

inertia matrix, nqqC ℜ∈),( &  is the centripetal and 

Coriolis forces vector, nqG ℜ∈)(  is the gravitational 

forces vector and nqF ℜ∈)( & is the friction vector.  
 
In this case, these matrices can be expressed as 
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Fig. 2. (Up) Robot scheme with its parameters; (down) 

robot system angles representation. 
 

dfm TqFqF += &&)( , mF  is the diagonal viscous 

friction constants matrix and dfT  represents other 

non-structural effects (resonances), i.e., the Coulomb 
friction constants vector. The final robot variables are 



θ1 (the revolution joint) and s2 and s3 (translation 
joints 2 and 3). The parameters nominal values of the 
robot can be seen in Table 1. The joints 4 and 5 will 
be neglected in this study because they do not permit 
any rotation, anyway their constants θ 4  and θ 5  are 
needed in the calculations. 
 
This dynamic model derives the direct cinematic 
model from the Denavit-Hartenberg algorithm. 
 

Table 1. Nominal parameters of the  
laparoscopic surgery robot. 

a1 0.42  
a2 0.095  
d2 0.30  
d3 0.34 + d4*cos(θ 4 ) +d5*cos(θ 4 + θ 5 )  
h d4*sin(θ 4 ) + d5*sin(θ 4 + θ 5 ) 
d4 0.25  

Distances [m] 
(see Fig. 2) 

d5 0.135  
m2 2.193 [kg] Masses of 

links 2 and 3 m3 1.205 [kg] 
b1 1 [kg·m2/rad] 
b2 1 [kg·m] 

Viscous 
friction 

constants of 
links 1, 2 and 3  b3 1 [kg·m] 

Cf1 1 
Cf2 1 

Coulomb 
friction 

constants of 
links 1, 2 and 3 Cf3 1 

 
 

2.2. Control Scheme and Control Objectives 
 
The control objective is to design a robust control 
scheme to track the laparoscopic instrument (tool) 
with sufficient precision to avoid damaging the 
patient. Thus, only position measurements are used 
i.e. joint space controllers (Berghuis, et al., 1994; 
Richardson, et al., 2004). 
 
X-Y-Z space coordinates (3D) determine where the 
terminal element of the robot has to be located. This 
spatial position is the reference ( x d, yd, zd) to the 
controller in order to move the robot arms to reach 
such a position. In the diagram of Fig. 2, the variables 
are: the desired robot position (θ 1 d , s2d, s3d) in the 
joint-space is obtained by inverse cinematic model 
(ICM) transformation; the (x, y, z) is the actual 
position of the robot arms after the direct cinematic 
model (DCM) transformation; and the control signals, 
(u1, u2, u3), give voltage to each joint. In Fig. 3 the 
control loop is shown. 
 
Despite the robot is a coupled MIMO system, that is, 
the s2 joint is independent of the applied torques to the 
other joints, but θ 1  and s3 are coupled, a decentralized 
control scheme is applied because the algorithm is 
SISO, and the MIMO systems analysis adds an 
unnecessary difficulty due to the fact that uncertainty 
model takes into account the coupling of joints 1 and 
3. 
 

The decentralized control is suitable when the 
conditions in (Skogestad, et al., 1997) are fulfilled, 
warranting the global stability with SISO-designed 
controllers. That happens in our system and besides, 
as far as practical applicability is concerned, 
decentralized controllers offer important advantages 
over centralized controllers like: the control system is 
simpler, the impact of a communication failure and 
breakdown of electrical power is more limited if the 
control system is implemented locally and the 
communication systems and other electronic devices 
can be cheaper (compared with the systems needed 
for a fully centralized control system). 
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Fig. 3. Control loop system. 
 
As usually, robotic control problem consists of 
tracking a given path in the presence of physical and 
task constraints. Physical constraints consist of joint 
torque limits, due to joint-motor voltage saturation, 
joint velocity and acceleration limits, as well as limits 
on joint positions for reasons of mechanical 
constructions. These constraints can be taken into 
account in robot motion planning studying the 
problem either in joint space, which leads to joint-
space trajectory plan and motion control, or in robot 
workspace. In our case the limit constraint exists for 
the three control variables, V5V5 ≤≤− iu , i = 1,2,3, 
and the robot partially-spherical working area is 
bound by: x∈[0.04, 0.16]m, y∈[0.29, 0.38]m and 
z∈[0.2, 0.4]m. The essential desired specifications 
must satisfy the requirements of robust stability and 
robust performance while the control inputs remain 
inside the range of operation of the actuators. 
 

3. ROBUST PID CONTROL DESIGN 
 
The use of robust control methods is motivated by 
the necessity to control the motion of robots where 
modeling errors are present, and lightly damped 
modes and unstable zeros make the control quite 
difficult. Also, these methods overcome the 
limitations of the proposed linear designs. For this 
reason the use of H∞ control is proposed in this 
article. Though this technique gives high-order 
controllers and is difficult to implement, it is 
preferable to design an optimal robust H∞ controller 
with a parametric approach that will allow the 
synthesis of low-order controllers with PID structure, 
ease to implement and to resintonize and non-fragile. 
The control algorithm used in this application was 



introduced in (Ho, 2003), and this is a 
computationally efficient procedure for carrying out 
H∞ PID optimal design instead of brute force 
optimization search procedure (Datta, et al., 2000). 
That leads to a complex version of the generalized 
Hermite-Biehler Theorem for solving H∞ PID 
optimal design problem considering uncertainties of 
the model. 
 
3.1. Model for Control and Uncertainty Model 
 
The control model formulation is an approximation to 
the complete model in (1). This model is linearized, 
(Shamma, 1995), in its nominal point 
(θ1nom ,s2nom ,s3nom)=(0,0,0) [rad,m,m]. Joints 1 and 3 of 
the laparoscopic robot present load and inertia 
variations, frictions, non-modeled dynamics, external 
disturbances, parameters subject to change due to 
robot working area and working conditions, 
couplings, etc., provoking that control model neglects 
part of their dynamics and presents errors which are 
captured by unstructured multiplicative uncertainties 
at the plant output (Koo, et al., 1994; Skogestad, et 
al., 1997). 
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where G0 is the transfer function of the nominal plant, 
G is the transfer function that represents one of the 
plants in the possible set of plants ∏. The uncertainty 

)(slm  is bounded by a rational function 

),()(:)( ssWsl Tm ∆ with 1)( <∆ s , so that 

( ) ( )     m Tl j W jω ω ω ℜ≤ ∇ ∈ . )(s∆  is the normalized 

uncertainty, ( )TW s  is the frequency weighting 

function (rational and stable transfer function). 
 
These robustness weight functions are chosen as: 
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Joint 2 is not affected by the above properties and the 
linearized model does not present significant 
uncertainties. Therefore, in our problem is remarkable 
to note that the robustness is estimated with the use of 
a bound on multiplicative uncertainty taking into 
account the model errors, due to the nonlinear 
dynamics of the system. The violation of such 
constraints may lead to poor control performance and 
possibly closed-loop instability. 
 
3.2. Controller Design 
 
The robust methodology of control chosen to compute 
independently the controllers of each joint is based in 
the use of the characterization of all PIDs to design 

the controllers of this type that minimize certain 
performance indices like the criterion H2, H∞, etc. In 
this case, it can be considered as a mixed sensitivity 
optimization problem (see Fig. 4), finding a 
stabilizing controller that minimizes the cost function 

[ ] T
iTiKSiS TWKSWSW

iii ∞
. 

 
Choosing the correct weights, a robust tracking 
performance (S), a limitation of the size and 
bandwidth of the controller and hence the control 
energy used (KS), stability (T), and the rejection to 
disturbances (measuring noise and external 
disturbances) can be achieved. These weights will be 
the same for all the joints ( 5.0=

iSW , 1=
iKSW ). 

 
From (Hoo, 2003) the set of stabilizing values (Kp, Ki, 
Kd) for each joint of the plant is obtained. For clarity 
in the representation the stabilizing regions of each 
controller will be denoted by St1, St2 and St3 for joint 
1, 2 and 3 respectively. 
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Fig. 4. S/KS/T  mixed-sensitivity optimization in standard 

form for each joint i. 
 
 

 
Fig. 5. Stabilizing region St1. 

 
 

 
Fig. 6. Stabilizing region St2. 
 



 
Fig. 7. Stabilizing region St3. 
 
The approximate admissible sets of PID parameter 
values, that ensure the system’s stability for all 
perturbations in the uncertainty set fulfilling the 
robust stability for each joint ( 1

iT iW T
∞

< ), are 

represented in Fig. 5, 6 and 7. 
 
Though in the design of these controllers the 
performance criteria H∞ is used, many possible 
controllers and an interval set of PIDs are obtained, 
being this robust control technique less conservative 
than the classical H∞ control. 
 
The performance specifications and the limitation of 
input control are specified by the analysis and 
temporal study of the influence of the PIDs in all the 
possible closed-loops. For the test of these 
specifications, the condition of robust performance 

1
iS iW S

∞

<  and the limitation of the control signal 

1<iKS KSW
i

for each joint are used. 

 
 

4. SIMULATION RESULTS AND DISCUSSION 
 
The previous procedure is applied to the laparoscopic 
robot described in Section 2. For checking the 
goodness of our method a significant desired 
trajectory is selected which is bounded in a larger 
operating space, 105.0)sin(05.0)( += ttxd , 

33.0)cos(04.0)( += ttyd  and 3.0)sin(1.0)( += ttzd . 

 
The goal is to develop and apply a control law that 
ensures robustness and good performance level of the 
flexible arm behavior. The performance 
measurements of the controlled system are specified 
in terms of temporal characteristics. Robustness to 
parameter changes and to uncertainties is specified by 
bounds on the sensitivity functions and by the fact 
that the control law must achieve a performance level 
for the proposed configuration of the surgery arm. 
 
Then, control system closed-loop temporal behavior 
analysis has been carried out for all the possible PIDs 
and the following values have been chosen: i) joint 1: 
Kp =60, Ki=20, Kd = 10; ii) joint 2: Kp =10, Ki=0,  
Kd = 20; and iii) joint 3: Kp =100, Ki=70, Kd = 10. 
This controller ensures a robust, precise, and 

sufficient fast behavior (faster poles result in larger 
control signals, which would breach the saturation 
limit and result in poor controller performance or 
instability), fulfilling always the stability criterion 
(global stability condition by decentralized control 
(Yang, et al., 2001)): 
 
• Robustness. 1) Robust stability: the flexible arm 
remains stable in this study case (see Fig. 8 (up)), 
reaffirming that the controller is robust in front 
modeling uncertainties and coupling generated by 
joints 1 and 3. The robot moves in the whole working 
area, varying the parameters in their maximum range. 
For the uncertainty worst case bound the robust 
stability conditions and the reject to disturbances 
(couplings) are fulfilled for each joint. 2) Robust 
performance: the sensitivity functions are bounded 
by 

iSW  for each joint, and the S mixed sensitivity 

problem is fulfilled, see Fig. 8 (down). 

 

 
 

Fig. 8. (Up) Robust stability; (down) robust performance. 
 
• Tracking performance: Fig. 9 shows the results of 
the variation in the (x,y,z) position that follows the 
actual terminal element of the robot. A short delay is 
present in the x position response, however the 
magnitude of the response is correct. The y position 
tracking has the correct shape nevertheless the 
magnitude of motion is less than the desired. The z 
response is highly accurate and not delayed. This 
case represents the most extreme test of controller 
performance. In medical applications, i.e. a robot 



holding a camera, the following tracking 
performance specifications are generally accepted: 
maximum position error of 5mm, and a transient time 
short about [1.5, 8] seconds in the best/worst case, 
warranting always a robust stability for safety 
reasons. Besides, in all position responses the control 
signal is inside the permissible range. 
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5. CONCLUSIONS 
 
In this article a robust control has been designed, 
overcoming the uncertainties inherent in robotics 
systems. It has been implemented in a laparoscopic 
robot and, after simulating the instrument 
movements, the robot tracks the desired position with 
a small error, time requirements and stability. Many 

study cases were carried out in order to test the robot 
in all the situations, achieving good results.  
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