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1. INTRODUCTION

Many researches on nonholonomic systems have been
done in the fields of control engineering and robotics.
Nonholonomic systems are defined in analytical me-
chanics as systems that there exist nonintegrable con-
straints and the behavior is subject to the constraints.
In researches of nonholonomic systems, almost all
constraints are linear in velocities, called linear con-
straints. For example, mobile robots, trailers, space
robots and so on, many systems in engineering have
such linear constraints. In general, integrability and
nonintegrability of linear constraints can be checked
using concepts of Lie brackets, involutivity of dis-
tributions and Frobenius’s theorem. It is well known
that linear constraints are transformed into symmet-
rically affine control systems and such systems are
not locally asymptotically stabilizable by any nonlin-
ear smooth state feedback from Brockett’s theorem
(Brockett, 1983). Therefore, many control laws such
as nonsmooth feedback law, time-varying feedback
and switching control to avoid the property have been
proposed. On the other hand, there is a larger class of
constraints which are affine in velocities, called affine

constraints. Space robots with initial angular momen-
tum, a rolling ball on a rotating table and a pneumatic
tire (Neimark, et al. 1972) are subject to such affine
constraints. However, few researches on affine con-
straints have been done so far. Moreover, there is no
study on asymmetrically affine control systems which
are derived from affine constraints.

The purpose of this paper is to analyze kinematically
asymmetrically affine control systems with nonholo-
nomic affine constraints based on nonlinear control
theory. In Section 2, we first give a classification
method, geometric representation of affine constraints
and then show their complete nonholonomicity con-
dition. We next derive the kinematically asymmetri-
cally affine control system (KAACS) in Section 3.
Section 4 contains the main results of this paper and
it devotes nonlinear control analysis of the KAACS.
Accessibility, controllability and stabilizability of the
KAACS are investigated here. Finally, we illustrate
two physical examples to check our theory in Section
5. Through this paper, manifolds, vector fields, func-
tions and distributions are all assumed to be smooth.



2. NONHOLONOMIC AFFINE CONSTRAINTS

2.1 Preliminaries

In this subsection, we give some preliminaries on
affine constraints. We first define affine constraints
which we treat through this paper. Let Q be an n-
dimensional configuration manifold and a column
vector q = [ q1 · · · qn ]T ∈ Rn be a generalized
configuration coordinate of Q. In this paper, we con-
sider n−m (n > m) affine constraints:

A(q) +B(q)q̇ = 0, (1)

where A(q) is an (n−m)-dimensional column vector
and B(q) is an (n −m) × n matrix. Now we assume
independence of affine constrains as follows.

Assumption 1. B(q) in affine constraints (1) has row
full-rank, that is, rankB(q) = n−m, ∀q ∈ Q. �

We next introduce new concepts to classify affine
constraints. A point q ∈ Q such that A(q) = 0 is
called an affine equilibrium point and the set of affine
equilibrium points is defined by

Ue = {q ∈ Q |A(q) = 0} . (2)

We then define the affine index at qe ∈ Ue:

r(qe) := rank
∂A

∂q
(qe) (3)

and the affine index of the affine constraints:

r := max
qe∈Ue

r(qe). (4)

Using these, we classify affine constraints as follows.

Definition 1. Affine constraints (1) are categorized
into three types by affine indices as follows.
(A) r = 0 : completely linear constraints
(B) 1 ≤ r ≤ n−m− 1 : r-th order partially affine

constraints
(C) r = n−m : completely affine constraints �

In Definition 1, ”completely linear constraints” corre-
spond with ”linear constraints” which have been stud-
ied so far. ”Partially affine constraints” are constraints
that linear and affine constraints are blended such as
a coin on a rotating table in Section 5. ”Completely
affine constraints” are constraints which consist of
only affine constraints such as a ball on a rotating table
in Section 5.

Finally, we explain geometric representation of affine
constraints. Geometric representation plays important
roles through this paper. Since n −m row vectors of
B(q) are independent each other from Assumption 1,
we consider m vector fields Y1, · · · , Ym which are
independent each other and annihilate n − m row
vectors of B(q). Let us denote a space spanned by
Y1, · · · , Ym, that is, a distribution on Q as

D = span{Y1, · · · , Ym}. (5)

A curve q : I → Q is said to satisfy affine constraints
for a time interval I if and only if there exists a vector
field X and the curve satisfies

q̇(t) −X(q(t)) ∈ D(q(t)) ∀ t ∈ I. (6)

X is called an affine vector field and satisfies

A(q) +B(q)X(q) = 0, ∀q ∈ Q. (7)

Therefore, affine constraints (1) are geometrically rep-
resented by a pair (D,X) (Lewis et al., 1995; Bloch,
2003). The next holds for geometric representation.

Proposition 1. For the geometric representation of
affine constraints (D,X), X(q) ∈ D(q) holds at a
point q ∈ Q if and only if the point is an affine
equilibrium point. Conversely, X(q) �∈ D(q) holds
at a point q ∈ Q if and only if the point is an affine
regular point. �

2.2 Completely Nonholonomicity

In this subsection, we discuss completely nonholo-
nomicity of affine constraints. If all the n −m affine
constraints (1) are nonintegrable, they are said to
be completely nonholonomic or completely noninte-
grable. Now we define a smallest and involutive dis-
tribution C0 which contains Y1, · · · , Ym and satisfies
[X,W ] ∈ C0, ∀W ∈ C0. The necessary and sufficient
condition of complete nonholonomicity for affine con-
straints is given as follows.

Theorem 1. Affine constraints (1) are completely non-
holonomic if and only if

dimC0 = n (8)

holds.
(Proof) Consider the product space Q̄ := R ×Q with
(n + 1)-dimension, where R is the space of the time
variable. In Q̄, affine constraints (1) are represented by
Pfaffian equations of n−m differential forms:

A(q)dt+B(q)dq = 0. (9)

Since an affine vector field X of geometric represen-
tation satisfies (7), m + 1 vector fields on Q̄ which
annihilate (9) are given by

X̄ :=
∂

∂t
⊕X, Ȳi := 0 ⊕ Yi (i = 1, · · · ,m). (10)

Now we define an involutive distribution C̄ defined
on Q̄, which contains X̄, Ȳ1, · · · , Ȳm and iterated Lie
brackets that consist of X̄, Ȳ1, · · · , Ȳm. Therefore,
the necessary and sufficient condition for complete
nonintegrability is given by

dim C̄ = n+ 1 (11)

(cf. Frobenius’s theorem (Nijmeijer et al., 1990;
Isidori 1995)). Calculate iterated Lie brackets which
consist of X̄, Ȳ1, · · · , Ȳm, we have

[X̄, Ȳi] = 0 ⊕ [X,Yi] ,
[X̄, [X̄, Ȳi]] = 0 ⊕ [X, [X,Yi]], · · ·
[Ȳj , Ȳi] = 0 ⊕ [Yj , Yi] ,
[Ȳk, [Ȳj , Ȳi]] = 0 ⊕ [Yk, [Yj , Yi]], · · ·

(12)

We can find that X̄ is independent of Ȳi, · · · , Ȳm

and iterated Lie brackets (12) each other. Therefore,
the necessary and sufficient condition (11) is changed
into the condition that Ȳ1, · · · , Ȳm and iterated Lie



brackets which consist of X̄, Ȳ1, · · · , Ȳm span an
n-dimensional space. From (10) and (12), we only
consider Y1, · · · , Ym on Q instead of Ȳ1, · · · , Ȳm

on Q̄, and iterated Lie brackets which consist of
X,Y1, · · · , Ym on Q instead of those which consist of
X̄, Ȳ1, · · · , Ȳm on Q̄. Consequently, the necessary and
sufficient condition for the complete nonintegrability
is that Y1, · · · , Ym and iterated Lie brackets which
consist of X,Y1, · · · , Ym span an n-dimensional
space, that is, (8) holds. �

We then assume the following, that is, we deal with
nonholonomic affine constraints.

Assumption 2. Affine constraints (1) are completely
nonholonomic, that is, (8) holds. �

3. KINEMATICALLY ASYMMETRICALLY
AFFINE CONTROL SYSTEMS

In this section, we consider kinematically asymmetri-
cally affine control systems with nonholonomic affine
constraint (KAACS). Let an m-dimensional column
vector u = [ u1 · · · um ]T ∈ Ω ⊂ Rm be control
inputs, where u is admissible control inputs and Ω
denotes the set of admissible control inputs, which is a
bounded closed subset of Rm. We can think of veloc-
ities of the system q̇ as control inputs, since we deal
with kinematic models. Then we set control inputs u
as

u := E(q)q̇, (13)

where E(q) is an m × n matrix. Here we claim the
next assumption on control inputs.

Assumption 3. m control inputs (13) are assumed to
be independent each other. Therefore, E(q) in (13)
has row full-rank, that is, rankE(q) = m ∀q ∈ Q.
Moreover, all the control inputs do not lie on the
constrained space D⊥ := span{B1, · · · , Bn−m},
where B1, · · · , Bn−m are n−m row vectors of B(q),
that is,

rank
[
B(q)
E(q)

]
= n, ∀q ∈ Q (14)

holds. �

We next derive a KAACS from affine constraints (1)
and the control inputs (13) as follows.

Proposition 2. From affine constraints (1) and control
inputs (13) under Assumption 3, an affine vector field
X̂ and m base vector fields Ŷ1, · · · , Ŷm of a distribu-
tion D are uniquely given by

X̂(q) := −
[
B(q)
E(q)

]−1 [
A(q)

0

]
,

Ŷi(q) := −
[
B(q)
E(q)

]−1 [
0
ei

]
(i = 1, · · · ,m),

(15)

where ei is an m-dimensinal unit column vector.
Moreover, the kinematically asymmetrically affine
control systems with nonholonomic affine constraints:

q̇ = X̂(q) +
m∑

i=1

Ŷi(q)ui (16)

can be uniquely derived using X̂, Ŷ1, · · · , Ŷm. �

Since the drift term X̂ does not lie in the distribution
D at any affine regular point from Proposition 1, the
KAACS is essentially asymmetric in control inputs.
From (15), we can find that affine equilibrium points
of affine constraints (1) correspond with equilibria of
the KAACS, that is, X̂(q) = 0 if and only ifA(q) = 0.

Finally, we consider the linear approximation of the
KAACS, which plays an important role in nonlinear
control analysis in Section 4. Now we define

[
Ẑ(q) Ŷ (q)

]
:=

[
B(q)
E(q)

]−1

,

where Ẑ(q) is an n × (n − m) matrix and Ŷ (q) =
[ Ŷ1(q) · · · Ŷm(q) ]. Then the linear approximation of
the KAACS (16) at an equilibrium qe ∈ Ue is given
by

q̇ =
∂X̂

∂q
(qe)(q − qe) + Ŷ (qe)u

= −Ẑ(qe)
∂A

∂q
(qe)︸ ︷︷ ︸

A

(q − qe) + Ŷ (qe)︸ ︷︷ ︸
B

u

=: A(q − qe) + Bu,

(17)

where A is an n×n matrix and B is an n×m matrix.

4. NONLINEAR CONTROL ANALYSIS

4.1 Accessibility

In this subsection, we first consider accessibility of the
KAACS. Now we sum up some concepts of accessi-
bility of nonlinear control systems. Given q0 ∈ Q, let
ΛV (t, q0) be the set of points q ∈ Q that there exists
a neighborhood V of q0 and an admissible control u
such that there is a trajectory q(τ) of (16) which satis-
fies q(τ) ∈ V (0 ≤ τ ≤ t) and q(0) = q0, q(t) = q.
This set is called the accessible set from q0 at time
t. Let ΛV

t (q0) be the other set defined by a sum of
ΛV (τ, q0) from time 0 to t. This set is called the ac-
cessible set from q0 in up to time t. If ΛV

t (q0) contains
a non-empty open set of the configuration manifold
Q for all neighborhoods V of q0, then the system
is called locally accessible from q0. Moreover if for
any neighborhood V of q0, ΛV (t, q0) contains a non-
empty open set of the configuration manifold Q for
any t > 0 sufficiently small, then the system is called
strongly locally accessible from q0. Now we can prove
the following theorem.

Theorem 2. The KAACS (16) is strongly locally ac-
cessible from any point q ∈ Q.
(Proof) It is known that a system is strongly locally
accessible at q ∈ Q if and only if the dimension of the
strong accessibility distribution at the point is equal
to that of the configuration manifold (Nijmeijer et al.,
1990). We can find that the distribution C0 defined
in Section 2 is equivalent to the strong accessibility
distribution. Since affine constraints (1) are assumed



to be completely nonholonomic, that is, (8) holds, then
the KAACS is strongly locally accessible from any
point q ∈ Q. �

In case of completely linear constraints, it is well
known that the condition for complete nonintegrabil-
ity is equivalent to Chow’s theorem (Nijmeijer et al.,
1990).

4.2 Controllability

We next investigate controllability of the KAACS. If a
system is locally accessible and ΛV

t (q0) contains the
point q0, then the system is called locally controllable
at q0. There are two approaches to check local control-
lability for nonlinear control systems, the one is based
on linear approximation and the other is Sussmann’s
theorem (Sussmann, 1987). We here use the former
approach. It is known that if the linear approximation
of a nonlinear control system at an equilibrium is con-
trollable, then the nonlinear system is locally control-
lable at the equilibrium. Now we show the following
theorem for controllability of the linear approximation
of the KAACS.

Theorem 3. The linear approximation of the KAACS
at an equilibrium qe ∈ Ue (17) is controllable if and
only if the matrix defined by

V :=
[
∂A

∂q
(qe)Ŷ (qe) · · ·

∂A

∂q
(qe)

{
Ẑ(qe)

∂A

∂q
(qe)

}n−2

Ŷ (qe)

] (18)

has row full-rank, that is, rankV = n−m holds.
(Proof) The necessary and sufficient condition of con-
trollability of the linear approximation (17) is that rank
of the controllability matrix

W : =
[B AB · · · An−1B]

=
[
Ŷ (qe) − Ẑ(qe)

∂A

∂q
(qe)Ŷ (qe) · · ·

(−1)n−1

{
Ẑ(qe)

∂A

∂q
(qe)

}n−1

Ŷ (qe)

] (19)

is equal to n. Multiplying the n × n square non-

singular matrix

[
B(qe)
E(qe)

]
by (19) from the left-hand

side, then we have[
B(qe)
E(qe)

]
W =


On−m,m

∂A

∂q
(qe)Ŷ (qe) · · ·

Im Om · · ·

(−1)n−1 ∂A

∂q
(qe)

{
Ẑ(qe)

∂A

∂q
(qe)

}n−2

Ŷ (qe)

Om


 .

Note that rank of W does not change by multiplying
above. Consequently, rankW = n holds if and only if
rankV = n−m holds. This completes the proof. �

From Theorem 3, the following can be derived in case
of completely linear and partially affine constraints.

Corollary 1. In case of completely linear and par-
tially affine constraints, the linear approximation of
the KAACS at any equilibrium qe ∈ Ue (17) is uncon-
trollable.
(Proof) Multiplying a row elementary operation ma-
trix F by (18) from the left-hand side, then we have

FV =
[ ∗ · · · ∗
On−m−r,m · · · On−m−r,m

]
, (20)

where we use the following property:

F
∂A

∂q
(qe) =

[
Ir ∗

On−m−r,r On−m−r,n−r

]
.

In this case, rank of V is smaller than n −m because
of 0 ≤ r ≤ n−m− 1, then the linear approximation
(17) is uncontrollable from Theorem 3. �

In case of completely linear constraints, the linear
approximation is obviously uncontrollable due to A ≡
0. In case of partially affine constraints, the linear
approximation is also uncontrollable, and then we
have to adopt Sussmann’s theorem to check local
controllability. From Theorem 3, the following can be
derived in case of completely affine constraints.

Corollary 2. In case of completely affine constraints
with n ≤ 2m, if the affine index at an equilibrium
qe ∈ Ue is n−m and

rank
∂A

∂q
(qe)Ŷ (qe) = n−m (21)

holds at qe, then the linear approximation of the
KAACS at qe (17) is controllable. Therefore, the
KAACS (16) is locally controllable at qe.
(Proof) If the affine index at qe is n − m and (21)
holds, then rankV = n − m holds and the linear
approximation (17) is controllable from Theorem 3.
Therefore, the KAACS (16) is also locally controllable
at qe. �

If n > 2m holds or (21) does not hold in case of
completely affine constraints, we cannot check local
controllability of the KAACS by the linear approxima-
tion approach, and then we have to rely on Sussmann’s
theorem (Sussmann, 1987).

4.3 Stabilizability

In the previous subsection, we have studied local con-
trollability of the KAACS. In general, there exists a
gap between controllability and stabilizability in non-
linear control systems. In this subsection, we investi-
gate stabilizability to equilibria for the KAACS. We
first consider stabilizability of the KAACS by linear
state feedback. It is known that if the linear approx-
imation of a nonlinear system at an equilibrium is
controllable or all its uncontrollable modes are stable,
then the nonlinear system is locally asymptotically
stabilizable to the equilibrium by a linear state feed-
back. In case of completely linear constraints, uncon-
trollable modes of the linear approximation system
are not stable due to A ≡ 0. In case of partially
affine constraints, if uncontrollable modes of the linear



approximation are stable, then the KAACS is locally
asymptotically stabilizable by a linear state feedback.
In case of completely affine constraints, we can derive
the following from Corollary 2.

Corollary 3. In case of completely affine constraints
with n ≤ 2m, if the affine index at an equilibrium
qe ∈ Ue is n−m and (21) holds at qe, then the KAACS
(16) is locally asymptotically stabilizable to any equi-
librium qe ∈ Ue by a linear state feedback. �

We next consider stabilizability of the KAACS by
nonlinear smooth state feedback, which is a larger
class than linear state feedback. The necessary condi-
tion of locally asymptotic stabilizability by nonlinear
smooth state feedback can be derived as follows.

Theorem 4. If the KAACS (16) is locally asymptot-
ically stabilizable to an equilibrium qe ∈ Ue by a
nonlinear smooth state feedback, then the affine index
at qe is n−m, that is, r(qe) = n−m.
(Proof) Consider A(q) as a map A : U → Rn−m,
where U is an open set of Q. By the implicit function
theorem, if the affine index at qe is n −m, then there
exists a diffeomorphism σ : V →W such that

A ◦ σ−1(q1, · · · , qm, qm+1, · · · , qn)
= (qm+1, · · · , qn) +A(qe), q ∈W

and σ(qe) = 0, where V (⊂ U) is an open neighbor-
hood of qe in Q and W is an open neighborhood of 0
in Rn. Now A(qe) = 0, we have

σ ◦A−1(qm+1, · · · , qn)
= (q1, · · · , qm, qm+1, · · · , qn).

Therefore, the subset of Q defined by

M : = σ ◦A−1(A(qe)) = σ ◦A−1(0)
= (q1, · · · , qm, 0, · · · , 0)

can be parameterized by m variables, and then M
is m-dimensional submanifold of Q. On the other
hand, Ishikawa and Sampei (1998) have shown that
if a nonlinear control system is locally asymptotically
stabilizable, then the dimension of equilibria set is
equal to the number of control inputs. Consequently,
both the dimension ofM and the number of inputs are
m, this proves the theorem. �

From Theorem 4, the following can be derived in case
of completely linear and partially affine constraints.

Corollary 4. In case of completely linear and par-
tially affine constraints, the KAACS (16) is not locally
asymptotically stabilizable to any equilibrium qe ∈
Ue by any nonlinear smooth state feedback.
(Proof) In this case, the affine index at any equilibrium
qe is smaller than n−m. Hence from Theorem 4, the
proof is completed. �

From Corollary 4, the KAACS is not locally asymptot-
ically stabilizable by any smooth nonlinear state feed-
back in not only completely linear constraints case but
also partially affine constraints case. On the other hand
in case of completely affine constraints, the KAACS

has a possibility of locally asymptotic stabilizability
by a nonlinear smooth state feedback even though
Corollary 3 does not hold.

5. PHYSICAL EXAMPLES

In this section, we apply our results to two physical
examples. We first consider a coin on a rotating table
as shown in Fig. 1. Set the xy-coordinate whose origin
corresponds to the center of rotation of the table. Let
R be the radius of the coin andΩ be the angular rate of
the table. (x, y) denotes the point that the coin contacts
with the table and θ and φ denote the heading angle
and self-rotation angle of the coin, respectively. Then
the generalized configuration coordinate of the system
is denoted by q = [ x y θ φ ]T ∈ SE(2) × S
with n = 4. Considering equilibrium of velocities in
the heading and side directions of the coin, we obtain
affine constraints of this system:

[
0

Ω(y cos θ − x sin θ)

]
︸ ︷︷ ︸

A(q)

+
[
sin θ − cos θ 0 0
cos θ sin θ 0 R

]
︸ ︷︷ ︸

B(q)



ẋ
ẏ

θ̇

φ̇


= 0,

(22)
where m = 2. Therefore, the equilibria set is given
by Ue = {q ∈ Q | y cos θ − x sin θ = 0}. We can find
that affine constraints (22) are completely nonholo-
nomic by calculating C0. Since the affine index at any
equilibrium qe ∈ Ue is r(qe) = 1 < n−m = 2, then
affine constraints (22) are first order partially affine
constraints. Assuming that θ̇ and φ̇ can be controlled,
that is, we set control inputs u = [ u1 u2 ]T as

[
u1

u2

]
=

[
0 0 1 0
0 0 0 1

]
︸ ︷︷ ︸

E(q)



ẋ
ẏ

θ̇

φ̇


 . (23)

Therefore, from affine constraints (22) and control
inputs (23), the KAACS is given by


ẋ
ẏ

θ̇

φ̇


 =



Ω cos θ(x sin θ − y cos θ)
Ω sin θ(x sin θ − y cos θ)

0
0




︸ ︷︷ ︸
X̂

+




0
0
1
0




︸︷︷︸
Ŷ1

u1 +



R cos θ
R sin θ

0
1




︸ ︷︷ ︸
Ŷ2

u2.

(24)

Since affine constraints (22) are completely nonholo-
nomic, then the KAACS (24) is strongly locally ac-
cessible at any point ∀q ∈ Q from Theorem 2. Due
to partially affine constraints, the linear approximation
of (24) at any equilibrium qe ∈ Ue is uncontrol-
lable from Corollary 1. However we can find that the
KAACS (24) is locally controllable at any equilib-
rium qe by Sussmann’s Theorem. Finally, it is shown



from Corollary 4 that the KAACS (24) is not locally
asymptotically stabilizable to any equilibrium qe by
any nonlinear smooth state feedback.

θ

x
(x, y)

y

Ω

R

φ

Fig. 1. A coin on a rotating table.

The second example is a ball on a rotating table
as depicted in Fig. 2. Set the xy-coordinate whose
origin corresponds to the center of rotation of the
table. Let R be the radius of the ball and Ω be the
angular rate of the table. (x, y) denotes the point that
the ball contacts with the table and (θ, φ, ψ) denotes
the Eulerian angles of the ball. Then the generalized
configuration coordinate of the system is denoted by
q = [ x y θ φ ψ ]T ∈ R2 × SO(3) with n = 5.
Considering equilibration of velocities in the x and y
directions of the ball, we obtain affine constraints of
the system as follows.

[
Ω y
−Ω x

]
︸ ︷︷ ︸

A(q)

+
[
1 0 −R sinψ R sin θ cosψ 0
0 1 R cosψ R sin θ sinψ 0

]
︸ ︷︷ ︸

B(q)



ẋ
ẏ

θ̇

φ̇

ψ̇


= 0,

(25)
where m = 2. Therefore, the equilibria set is given by
Ue = {q ∈ Q | x = y = 0}. We can find that affine
constraints (25) are completely nonholonomic by cal-
culating C0. Since the affine index at any equilibrium
qe ∈ Ue is r(qe) = 2 = n−m, then affine constraints
(25) are completely affine constraints. Assuming that
θ̇, φ̇ and ψ̇ can be controlled, that is, we set control
inputs u = [ u1 u2 u3 ]T as


u1

u2

u3


 =


0 0 1 0 0

0 0 0 1 0
0 0 0 0 1




︸ ︷︷ ︸
E(q)



ẋ
ẏ

θ̇

φ̇

ψ̇


 . (26)

Therefore, from affine constraints (25) and control
inputs (26), the KAACS is given by


ẋ
ẏ

θ̇

φ̇

ψ̇


 =



−Ωy
Ωx
0
0
0




︸ ︷︷ ︸
X̂

+



R sinψ
−R cosψ

1
0
0




︸ ︷︷ ︸
Ŷ1

u1

+



−R sin θ cosψ
−R sin θ sinψ

0
1
0




︸ ︷︷ ︸
Ŷ2

u2 +




0
0
0
0
1




︸︷︷︸
Ŷ3

u3.

(27)

Since affine constraints (25) are completely nonholo-
nomic, then the KAACS (27) is strongly locally acces-
sible at any point ∀q ∈ Q from Theorem 2. Since n <
2m and (21) hold, we can find that the KAACS (27) is
locally controllable at any equilibrium qe ∈ Ue from
Corollary 2. Finally, it is shown from Corollary 3 that
the KAACS (27) is locally asymptotically stabilizable
to any equilibrium qe by a linear state feedback.

x
(x, y)

y

Ω
R

(θ, φ, ψ)

Fig. 2. A ball on a rotating table

6. CONCLUSION

We have analyzed the kinematically asymmetrically
affine control system with nonholonomic affine con-
straints based on nonlinear control theory. As a result,
we have shown that there exists a class of systems
whose linear approximation systems are controllable
and which are locally asymptotically stabilizable by
nonlinear smooth state feedback. These properties go
against the facts that are known for nonholonomic sys-
tems so far. Moreover we have found that there exist
systems which are locally asymptotically stabilizable
by linear state feedback.
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