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Abstract: In this paper, we present a control algorithm that incorporates real time
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1. INTRODUCTION

Optimization has become a key area in control
theory due to the increasing need to optimize
plant operation in order to reduce operating cost
and meet product specifications. As better con-
trollers are developed to adequately control a
plant, the focus can be shifted to the solution
of controller designs that guarantee optimal plant
performance. If, for example, one can generate a
reliable estimate of plant profitability, the purpose
is shifted to the regulation of the process about
conditions that provide maximum profitability.
Such a task is usually tackled using a supervisory
control technique. One such technique that has re-
ceived considerable attention in the process indus-
try is real-time optimization (RTO). One of the
main challenges involved with the implementation
of this technique is the difficulty associated with
the integration of RTO with advanced process
control (APC) applications. Despite the fact that
these technologies are firmly established, their full
integration remains troublesome in application.

In this paper, we propose a formal design tech-
nique that achieves the integrated task of RTO
and APC system where the APC consists of a
model predictive controller. The approach is based
on the previous work for a class of nonlinear

systems with parametric uncertainties (Adetola
et al., 2004). The control task is posed as an
adaptive output feedback extremum-seeking con-
trol problem. Extremum seeking control has been
proposed by a number of authors to handle op-
timization problems in control systems ((Guay
and Zhang, 2003) and references therein). The
formulation consists of two-phase optimization
problems that are solved at every sample time.
Assuming that a suitable functional expression for
the plant profit is available, which in some applica-
tion, may depend on unknown plant parameters,
the first phase (RTO) uses the current value of
the parameter estimates to compute the optimal
value which maximizes the economic objective.
The second phase (APC) solves the dynamic finite
horizon optimal control problem that regulates
the output to the desired target value computed
by the RTO. The design achieves dynamic track-
ing of the unknown optimum and ensures both
transient and asymptotic performances.

This paper is structured as follows. The problem
description is given in section 2 and the design
procedure is presented in section 3. The proposed
control algorithm and our main result are pre-
sented in section 4. Numerical simulation result
is shown in section 5 and finally, conclusions are
given in section 6.



2. PROBLEM DESCRIPTION

Consider an objective (profit) function of the form

yp = p(y, θ1) (1)

where θ1 ∈ Rq is a parameter vector that satisfies

θ1 ∈ Ωθ1 =
{

θ1 ∈ Rq

∣∣∣∣
∂2p(y, θ1)

∂y2
≤ c0I < 0, y ∈ R

}

(2)

The objective function depends on the output of
the linear plant

y(s) =
bmsm + · · ·+ b1s + b0

sn + an−1sn−1 + · · ·+ a1s + a0
u(s) (3)

where the ai ’s and bi ’s are unknown constants.

The condition given in (2) ensures that the perfor-
mance function p(y, θ1) is strictly convex, which
means that the objective function yp achieves its
maximum at a unique point y∗. This study is
carried out under the following basic assumptions.

• The plant is minimum phase, the relative
degree ρ, an upper bound for the plant order
n and the high frequency gain are known.

• The unknown parameter θ1 ∈ Rq in (1)
consists of some of the constants a =
[an−1 . . . a0]

T and b̄ = [bm−1 . . . b0]
T .

3. DESIGN PROCEDURE

Let us re-write (3) in the observer canonical form

ẋ = Ax + F (y, u)T Θ (4)

y = eT
1 x

where ei is a row vector of appropriate dimension
with ith entry of one and zero elsewhere.

A =




0 1 · · · 0
...

...
0 · · · · · · 1
0 · · · · · · 0




F (y, u)T =
[ [

0(ρ−1)×(m+1)

Im+1

]
u, −Iyn

]

Θ =
[
bm, . . . , b0, an−1, . . . , a0

]T

Following the procedure in (Krstic et al., 1995),
the following state estimation filters are employed.

ζ̇ = A0ζ + Ly (5)

Ω̇T = A0ΩT + F (y, u)T (6)

where the vector L is chosen so that the matrix
A0 = A− LeT

1 is Hurwitz. The state estimate is
defined as

x̂ = ζ + ΩT Θ (7)
and the dynamics of the state estimation error
ε = x− x̂ becomes

ε̇ = A0ε (8)

To lower the dynamic of the Ω-filter, the first m+1
columns of ΩT are denoted by υm, . . . , υ0 and the
remaining n columns are denoted by Ξ, i.e.

ΩT = [υm, . . . , υ1, υ0, Ξ]
υ̇j = A0υj + en−ju j = 0, . . . , m

A summary of the implemented filters is as follows

η̇ = A0η + eny, λ̇ = A0λ + enu

Ξ = − [
A0

n−1η, . . . , A0η, η
]
, ζ = −A0

nη

ΩT = [υm, . . . , υ0, Ξ] , υj = −A0
jλ j = 0, . . . , m

Consider the first equation in (4), i.e.

ẏ = x2 − an−1y = x2 − yeT
1 a (9)

If we replace x2 by its estimate x̂2 = ζ2+ΩT
(2)Θ+ε2

we have

ẏ = ζ2 + bmυm,2 + ωT θ + ε2 (10)

where the regressor vector, ω, and the unknown
parameter θ are defined as

ω =
[
υm−1,2, . . . , υ0,2, Ξ(2) − yeT

1

]T

θ = [bm−1, . . . , b0, an−1 . . . , a0]
T

3.1 ISS Controller design via Backstepping

The controller design is started by choosing υm,2

as the ‘virtual control’ because both υm,2 and the
unmeasured state x2 are separated by only ρ − 1
integrators from the actual control u. Considering
(10) and (9) for j = m, the design system chosen
to replace (4) is

ẏ = ζ2 + bmυm,2 + ωT θ + ε2

υ̇m,2 = υm,3 − k2υm,1

...
υ̇m,ρ = υm,ρ+1 − kρυm,1 + u

Given a constant set point, yr, to be tracked, our
goal is to achieve ISS of the tracking error z1 = y−
yr with respect to the parameter estimation error
θ̃. Note that in the iss-controller design, θ̂ = θ̄ =
constant estimate, which implies that ˙̂

θ = 0.
The dynamic of the tracking error is given as:

ż1 = bmυm,2 + ζ2 + ωT θ + ε2 (11)

Let zi = bmυm,i−αi−1 for i = 2, . . . , ρ and choose

α1 = −c1z1 − g1z1 − ζ2 − ωT θ̂ − k1ω
T ωz1

Then, we have

ż1 = −c1z1 − g1z1 + ε2 + ωT θ̃ − k1ω
T ωz1 + z2

which will be asymptotically stabilizing if θ̃, ε2

and z2 were zero. Consider a Lyapunov function
V1 = 1

2z2
1 . We have

V̇1 = −c1z
2
1−g1z

2
1+ε2z1+ωT θ̃z1−k1ω

T ωz2
1+z1z2



From the fact that −g1z
2
1 + ε2z1 ≤ 1

4g1
ε2
2 and

ωT θ̃z1 − k1ω
T ωz2

1 ≤ 1
4k1

∥∥∥θ̃
∥∥∥

2

, we have

V̇1 ≤ −c1z
2
1 +

1
4g1

ε2
2 +

1
4k1

∥∥∥θ̃
∥∥∥

2

+ z1z2

Step 2 . . . ρ− 1

zi = bmυm,i − αi−1

βi = bmkiυm,1 +
∂αi−1

∂y

(
ωT θ̂ + ζ2 + bmυm,2

)

+
∂α1

∂η
η̇ +

m+i−1∑

j=1

∂αi−1

∂λj
(−kjλ1 + λj + 1)

Vi = Vi−1 +
1
2
z2
i

αi = −cizi − gi(
∂αi−1

∂y
)2zi + βi − zi−1

− ki(
∂αi−1

∂y
)2‖ω‖2zi

V̇i ≤
ρ−1∑
m=1

−cmz2
m +

1
4gm

ε2
2 + ωT θ̃z1 − k1ω

T ωz2
1

−
ρ−1∑

j=2

∂αj−1

∂y
zjω

T θ̃ −
ρ−1∑

j=2

[
∂αj−1

∂y
zj

]2

kj‖ω‖2

⇒ V̇i ≤
i∑

m=1

−cmz2
m +

1
4gm

ε2
2 +

1
4km

∥∥∥θ̃
∥∥∥

2

+ zizi+1

Now for i = ρ, define zρ, żρ, βρ, αρ as in the
previous step, zρ+1 = 0 and

Vρ =
ρ∑

j=1

1
2
z2
j (12)

u =
1

bm
[αρ − bmυm,ρ+1] ISS control law

V̇ρ ≤
ρ∑

m=1

−cmz2
m +

1
4gm

ε2
2 +

1
4km

∥∥∥θ̃
∥∥∥

2

(13)

This implies that the error dynamic z is bounded
whenever θ̃ and ε2 are bounded. Hence, (12) is an
iss-Lyapunov function candidate for the problem
under consideration. Since z1 and yr are bounded,
y is also bounded. This means that η is bounded.
Following the argument presented in (Krstic et
al., 1995), it can be shown that λ is bounded which
implies the boundedness of x.

4. EXTREMUM SEEKING RHC
FORMULATION AND ANALYSIS

The formulation consists of two-phase design pro-
cedure as described below.

First Phase: At every time step t, the maximum
value of the objective (profit) function (1) is
obtained via an online set-point update law as

follows.
Consider a Lyapunov function candidate

Vsp =
1
2

(
∂p(r, θ̂1)

∂r

)2

(14)

where r denotes an optimal set point for the
output y. Taking the time derivative of Vsp, we
have

V̇sp =
∂p

∂r

[
∂2p

∂r2
ṙ +

∂2p

∂r∂θ̂1

˙̂
θ1

]
.

Choosing the update law as

ṙ = −
(

∂2p

∂r2

)−1 [
∂p

∂r
− ∂2p

∂r∂θ̂1

˙̂
θ1

]

leads to

V̇sp ≤ −
(

∂p

∂r

)2

(15)

Equations (14) and (15) imply that r approaches
the (θ̂1-dependent) optimal set-point y∗ as t →∞.
To provide some richness condition on the set-
point, we append it with a bounded dither signal
d(t) and define an approximate set-point yr(t) =
r(t) + d(t). In general, d(t) is chosen to contain
at least n (n=no of unknown parameters) distinct
frequencies, required for parameter convergence.
Other specific details will be given later.

Second Phase: At this step, a finite horizon
optimal control problem is solved subject to the
system dynamics and terminal state inequality
constraints at every time step with the estimated
plant states x(t) as initial condition. The goal
of this phase is to minimize a given cost while
ensuring that the system’s output y tracks the
reference setpoint yr dictated by the first phase.
Let us re-write (4) as

ẋ = Ax + eρbmu + F̄ (y, u)T θ (16)

where F̄ (y, u)T =
[ [

0ρ×m

Im

]
u, −Iyn

]
and de-

fine

J = zT Pz +
∫ t+Tp

t

zT (τ)Cz(τ) + u(τ)T Ru(τ)dτ

The proposed ESRHC scheme is given by:

min
u
J (17)

s.t ẋ = Ax + eρbmu + F̄ (x1, u)T θ̄ (18)

x(t) = x̂(t), θ̄ = θ̂(t) (19)

umin ≤ u ≤ umax (20)

V (t + Tp) ≤ V iss(t + Tp) (21)

z1 = x1 − yr, yr = r + d(t),

α1 =−c1z1 − g1z1 + eT
m+1θ̄x1

αi−1 =−(ci−1 + gi−1)zi−1 − zi−2 + α̇i−2 + eT
m+iθ̄x1,

zi = xi − αi−1, i = 2 . . . ρ



where P and R are positive definite weighting ma-
trices, Tp is the length of the prediction horizon,
the function V is the value of the CLF resulting
from the application of ESRHC and V iss is the
value of the CLF that results from the application
of the iss controller. Constraint (21) guarantees
that the states under the ESRHC are brought
within the level set of the iss-controller at the end
of the prediction horizon, thereby ensuring that
the states under the ESRHC remain bounded. By
(19) the optimization problem is initialized by the
estimated state, and the unknown parameters in
(17) and (18) are replaced by the estimated val-
ues. The optimizer computes the required control
moves over the horizon. The input u(t) is imple-
mented on the plant at time t. An estimate of the
unmeasured state x̂ and the unknown parameters
θ̂(t) are obtained via an observer and a parameter
update law respectively. The horizon is shifted
forward and a new optimization problem is solved
at the next time step t+δ with the new x = x̂(t+δ)
and θ̄ = θ̂(t+δ). The control u(t+δ) is applied at
time t + δ and the process is repeated. In general,
it is assumed that the time step length δ can be
chosen to be arbitrarily small.

4.1 Main Result

The stability and performance of the proposed
scheme is demonstrated in the following. Consider
the function

W (z(t)) = zT (t + Tp)Pz(t + Tp)

+
1
2

∫ t+Tp

t

z(σ)T Cz(σ)dσ (22)

where P = I and z(.) is the error trajectory
resulting from the ESRHC. This function is pos-
itive definite and it is radially unbounded if V is
positive definite and radially unbounded.
For τ ∈ [t, t + δ], eq. (22) becomes

W (z(τ)) = zT (τ + Tp)Pz(τ + Tp) +

1
2

[∫ t+Tp

τ

z(σ)T Cz(σ)dσ +
∫ τ+Tp

t+Tp

z(σ)T Cz(σ)dσ

]

(23)

From the iss-controller design section, we have

V̇ iss ≤− zT Cz +
1

4G
ε2
2 + ωT θ̃z1

−
ρ∑

j=2

∂αj−1

∂y
zjω

T θ̃ (24)

where C = ciI i = 1 . . . ρ and G =
∑ρ

m=1 gm

Integrating (24) over [t + Tp, τ + Tp], we obtain

1
2

∫ τ+Tp

t+Tp

z(σ)T Cz(σ)dσ ≤ V (t + Tp)− V (τ + Tp)

+
∫ τ+Tp

t+Tp

Υ(σ)dσ

where

Υ = −1
2
zT Cz +

1
4G

ε2
2 +ωT θ̃z1−

ρ∑

j=2

∂αj−1

∂y
zjω

T θ̃

Hence, equation (23) becomes

W (z(τ)) ≤ W (z(t)) +
∫ τ+Tp

t+Tp

Υ(σ)dσ

dividing both sides by τ − t and taking the lim
sup as τ goes to t results in

Ẇ (z(t)) ≤ Υ(t + Tp) (25)

Close-loop Analysis: Re-write (16) as

ẋ = Ax + Bu(x)RHC − ya, x(t) = x(t) (26)
˙̂x = Ax̂ + Bu(x̂)RHC − ya, x(t) = x̂(t) (27)

where B = f1b̄ + eρbm, f1 =
[
0ρ×m Im

]T , b̄ =[
b̄m−1 . . . b̄0

]T and a =
[
an−1 . . . a0

]T . The
state error dynamic x̃ = x − x̂ between (26) and
(27) is

x̃(t) = Ax̃ + Bu(x̃)RHC , x̃(t) = x(t)− x̂(t)
(28)

and the solution of (28) for τ ∈ [t, t + Tp] is

x̃(τ) = eA(τ−t)x̃(t) +
∫ τ

t

eA(τ−s)Bu(x̃(s))RHCds

(29)

The solution uRHC resulting from the ESRHC
scheme has been shown to be piecewise affine
(Bemporad et al., 2000). i.e.

u(t) = kix(t) + mi (30)

for x(t) ∈ Ci , [x : His ≤ si] i = 1, . . . , s
where

⋃s
i=1 Ci is the set of states for which a

feasible solution to the finite horizon optimal
control problem (second phase) exists.
Therefore,

u(x̃(t)) = kix̃(t) + εi ≤ k̄x̃(t) + ε̄

where k̄ := maxi |ki|, ε̄ := maxi |εi|. When ‖x‖ ≥
1, |u| ≤ (k̄ + ε̄) ‖x‖. Also, when 0 ≤ ‖x‖ < 1, and
ε̄ sufficiently small, there exists ν > 0 such that
|u| ≤ (k̄ + ν) ‖x‖.
So, without loss of generality, it is assumed that

|u(x̃(t))| ≤ L ‖x̃(t)‖ , L := max
(
k̄ + ε̄, k̄ + ν

)

Then, using Bellman Gronwall Lemma, (29) re-
sults in

‖x̃(τ)‖ ≤e(τ−t) ‖x̃(t)‖+
∫ τ

t

e(τ−s)$ ‖x̃(s)‖ ds

≤% ‖x̃(t)‖ (31)

where % = exp
(−$ + $e(τ−t)

)
, ‖A‖ = 1 and

L ‖B‖ = $.
Parameter Estimation: We define the predicted
state, x̂a as

x̂a = ζ + ΩT Θ̂



Considering (5) and (6), the predicted state dy-
namic is given as

˙̂xa = A0ζ + Ly + A0ΩT Θ̂ + F (y, u)T Θ̂ (32)

Noting that F (y, u)T Θ = F̄ (y, u)T θ + eρbmu and
bm is assumed known, the prediction error εa =
x− x̂a dynamic results in

ε̇a = F̄ (y, u)T θ̃ + A0εa (33)

Consider a Lyapunov function

V1(t) =W (t) +
1
G

εT (t)P0ε(t) +
1
2
εT

a (t)Q0εa(t)

+
1
2
θ̃T (t)Γ−1θ̃(t) (34)

where Γ = ΓT > 0, Q0 and P0 are real symmet-
ric positive definite matrices that satisfy P0A0 +
AT

0 P0 = −%2I and Q0A0 + AT
0 Q0 = −I respec-

tively. Taking the time derivative of V along the
solutions of (8) and (33) we have

V̇1(t) ≤ Υ(t + Tp)− %2

G
ε(t)T ε(t)− ˙̂

θT (t)Γ−1θ̃(t)

− 1
2
εT

a (t)εa(t) + εT
a (t)Q0F̄ (y, u)T θ̃(t)

Considering the fact that there is no adapta-
tion along the prediction horizon, we have θ̃(t +
Tp) = θ̃(t). Moreover, It is deduced from (31)
that ‖ε(t + Tp)‖ ≤ % ‖ε(t)‖, since the plant is
initialized by the state estimates obtained via (7)
at the beginning of the prediction horizon i.e.
x̃(t) = ε(t). We therefore obtain

V̇1(t) ≤ −1
2
z(t + Tp)T Cz(t + Tp)− 3%2

4G
ε(t)T ε(t)

−εT
a (t)Kεa(t) +

[
ψ − ˙̂

θT Γ−1
]
θ̃

where ψ , εT
a F̄ (y, u)T +z1(t+Tp)ωT

−
ρ∑

j=2

∂αj−1

∂y
ωT zj(t + Tp).

The parameter adaptation rule is selected to en-
sure that

[
ψ − ˙̂

θT Γ−1
]
θ̃ ≤ 0 and that the param-

eter estimates remain in some given set. This is
achieved by using standard parameter projection
law. Refer to (Krstic et al., 1995) for more details.
Defining Ψ = ΓψT , the update law is given by

˙̂
θ = Proj

{
θ̂, Ψ

}
(35)

The properties of the projection operator ensures
that the parameters are bounded and that

V̇1(t) ≤− 1
2
z(t + Tp)T Cz(t + Tp)

− 3
4G

%2ε(t)T ε(t)− εT
a (t)Kεa(t) (36)

From (36), it is concluded that z, ε, εa and θ̃ are
uniformly bounded and that z, ε and εa converge
to the origin asymptotically.
Parameter Convergence: From the previous sub-
section, it is established that εa converges to

zero, hence,
∫∞
0

ε̇a(σ)dσ = −εa(0) exists and is
finite. Also, from (33), it is known that ε̇a is a
function of bounded signals y, u, θ̃ and εa which
means that ε̈a is bounded. Hence, ε̇a, is uni-
formly continuous. By Barbalat’s lemma (Krstic
et al., 1995), it is concluded that ε̇a → 0 as
t → ∞. This implies that limt→∞ F̄ (y, u)T θ̃ = 0
or limt→∞ θ̃T F̄ (y, u)F̄ (y, u)T θ̃ = 0. From the ar-
gument presented in (Adetola et al., 2004), we
conclude that if the dither signal d(t) satisfies a
richness condition:

1
T0

∫ t+T0

t

F̄ (τ)F̄ (τ)T dτ ≥ c0I, c0 > 0 (37)

then the parameter error θ̃ converges to zero
asymptotically.

Lemma 1. Consider the adaptive system, eq.(4),
with receding horizon controller eqs.(17)-(21), the
adaptive laws (35), the state observer (7) and
state estimation dynamics eq.(33). If the dither
signal d(t) is chosen such that the PE condition
(37) is satisfied, then the parameter estimation
error θ̃ converges to zero asymptotically.

The proof is similar to the one presented in
((Adetola et al., 2004), Lemma 1)

Theorem 2. Consider the objective function (1)
subject to the system dynamics (4), and satisfying
the given assumptions. If the dither signal d(t) sat-
isfies the persistence of excitation condition (37),
then the ESRHC (17)-(21), the state observer (7)
and the parameter estimation scheme (33) and
(35) solves the extremum seeking problem.

Proof : It follows from the stability analysis that
z1 , y − yr → 0 as t → ∞. If d(t) is designed to
satisfy the PE condition (37), then it is concluded
by Lemma 1 that limt→∞ θ̂ = θ. Hence y con-
verges to a neighborhood of the optimal set point
r∗ whose size depends on d(t). ¤

Lemma 3. The tracking error z of the closed loop
dynamical system is bounded by

‖z‖p ≤ 2
√

γV1(0), p = 2 or ∞, γ =
1

λmin(C)

Proof : L2 Performance:

‖z‖22 =
∫ Tp

0

zT (τ)z(τ)dτ +
∫ ∞

Tp

zT (τ)z(τ)dτ

From (36) we know that z(t + Tp)T z(t + Tp) ≤
−2γV̇1. Since V1 is non-increasing,
∫ ∞

Tp

zT (τ)z(τ)dτ ≤ 2γ [V1(Tp)− V1(∞)] ≤ 2γV1(0)

(38)



Also from (22), we have
∫ Tp

0

zT (τ)z(τ)dτ ≤ 2γ
[
W (z(0))− zT (Tp)z(Tp)

]

(39)
Equations (38) and (39), lead to

‖z‖22 ≤ 2γ [W (z(0)) + V1(0)] (40)

Noting from (34), that W (0) ≤ V1(0) concludes
the L2 norm proof. The proof for L∞ performance
follows from (34) and the fact that V1 is non-
increasing. ¤

Remark 4. From above, it is clear that the tran-
sient performance depends on θ̃, ε(0), εa(0), z(0),
G, P0 and Γ. We can set z1(0) to zero by setting
ŷr(0) = y(0) and use the other tuning functions
to systematically reduce the bounds.

5. SIMULATION EXAMPLE

Consider the following linearized model for a non-
isothermal CSTR where an exothermic reaction
A → B is carried out. The dynamic of the
reactor is given as ẋ = Ax + Bu, y = [1, 0]x
where x is a vector of the reactor temperature
and concentration, and u is the coolant flow rate.
The matrix A and B are as follows:

A =



−∆Hk(T ∗)

ρCp
a12

−F

V
− k(T ∗) − E

RT ∗2
k(T ∗)C∗A




B =


−2.1× 105 T ∗ − Tcin

V ρCp

0




The expression for the reaction rate is given by
k(T ∗) = Koe

−(E/RT∗), where Ko is the kinetic
constant of the reaction and E/R is the activation
energy.

a12 = −F

V
− UA

V ρCp
−∆H

E/(RT ∗2)
ρCp

k(T ∗)C∗A

We assume that θ1 = k(T ∗) and θ2 = E/RT ∗ are
not known. The objective is to adaptively stabilize
the system to the unknown set-point (T ∗, C∗A)
that guarantees 90 percent conversion of reactant
A. The specific parameters and operating condi-
tions used for the simulation are F = 1m3/min,
V = 1m3, Tcin = 365K, CA0 = 2.0kmole/m3, Cp

= 1cal/(goC), ρ = 106g/m3, ∆Hrxn = -130×106

cal/(kmole). The coolant flow is restricted to 13 ≤
u ≤ 17 m3/min. d(t) = (0.5 sin 9t+sin 7t) e−0.5t +
0.7 cos 6t e−0.3t. The true values of the unknown
parameters are θ1 = 9min−1 and θ2 = 21.07. The
target optimal values are C∗A = 0.2 kmol/m3 and
T ∗ = 395.27K.

The simulation result (Figure 1) shows that the
adaptive ESRHC stabilizes the system states to
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Fig. 1. Reactor Closed loop Trajectories

the required steady-state values and the economic
function reaches the optimum in a reasonable
time. The parameter estimates converge to the
true values. The control input also converges to
the appropriate steady-state value and satisfies
the given bounds.

6. CONCLUSION

A method is developed to solve an extremum
seeking control problem for linear uncertain plant.
The technique employs an iss-control Lyapunov
function to ensure stability and performance. It
is shown that the proposed scheme is able to
drive the system states to unknown desired states
that optimize the value of an objective function
provided an excitation condition is satisfied.
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