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Abstract: The paper considers a set-membership joint estimation of variables and 

parameters in complex dynamic networks based on parametric uncertain models and 

limited hard measurements. The recursive estimation algorithm with moving 

measurement window is derived that is suitable for on line network monitoring.  The 

window allows stabilising the classic recursive estimation algorithm and significantly 

improves the estimate tightness. The estimator is validated on a case study water 

distribution network. Tight set estimates of unmeasured pipe flows, nodal heads and 

pipe resistances are obtained. Copyright © 2005 IFAC. 
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1. INTRODUCTION 
 

Joint estimation of variables and model parameters is 

a routine activity that is carried out on-line during 

network operation. Estimation of heads, flow rates, 

chlorine concentrations, pipe parameters or chlorine 

reaction rates across drinking water distribution 

network (Brdys and Chen, 1996; Brdys and Lisiak, 

1999; Brdys et al., 2001; Duzinkiewicz 2005) and 

estimation of biological state and model parameters 

for integrated wastewater system (Rutkowski et al., 

2004) can serve the examples. It is crucial to properly 

integrate a priori knowledge including mathematical 

models with measurement information provided by 

hard sensors in order to obtain robust and quality 

estimates. An uncertainty exists due to the modelling 

errors, measurement noise and disturbance inputs. In 

the paper in order to obtain robust estimates with 

guaranteed estimation error and at the same time to 

simplify modelling effort, which is necessarily due to 

a network complexity a set membership model of the 

uncertainty is employed (Schweppe, 1978; Milanese 

et al., 1996; Walter and Pronzato, 1997; Chang et al., 

2004; Duzinkiewicz, 2005). For linear case, the 

solution set is a convex polyhedron which can be 

very complicated and other simple-shaped forms, 

such as ellipsoids, parallelotopes have been used to 

give an enclosure of the exact solution set (Milanese 

et al., 1996; Walter and Pronzato, 1997). When the 

model is nonlinear, the previous algorithms are no 

longer relevant (Raïssi et al., 2004). In the paper the 

outer approximation is used defined by taking 

orthogonal projections of the exact set. The estimates 

are sets bounding uncertain parameters and tubes 

bounding uncertain variable trajectories. The point 

estimates can be selected from the set estimates 

depending on their future usage. Regardless of the 

selection the estimation error can be always assessed 

in a guaranteed manner. The Chebyshev centres of 

the sets serve the point estimates that minimise the 

estimation error in a worst case (Milanese et al., 

1996). In the paper recursive algorithms for the set 

membership estimation are derived. A moving 

measurement window is introduced in order to 

stabilize the estimates and also to compromise 



between the computational effort and the estimates 

tightness.  
 

 

2. ESTIMATION PROBLEM 

 

2.1 Information 
 

We shall consider a dynamic network that is 

composed of interconnected static and dynamic 

elements. The element variables and its model 

parameters are related by equalities to obtain the 

element mathematical model. For a dynamic element 

we shall distinguish between the state variables and 

remaining non-state variables. The non-state 

variables are composed of the network inputs, 

outputs and intermediate variables. The latter 

variables connect the elements. It is a common 

property of the static network element models that all 

the variables are linked in an implicit manner through 

the model equalities. Hence, for a network as a whole 

we shall distinguish between state variables s , non-

state variables y  and external inputs (controls and 

disturbances) u . As all three types of variables are to 

be estimated (controls due to actuator error) the 

composed vector x  of the estimated variables is 

introduced as: 
 

[ ] yux
nnnTTTT ℜ∈ℜ∈ℜ∈= yuxyusx ,,;,,  (1) 

 

Let us denote by F the operator representing all the 

algebraic equations modelling the network static part. 

Hence, a static part of the network model can be 

written as: 
 

( ) 0x =F  (2) 
 

The operator F is not exactly known and only its 

approximate model F M
 is available. The following 

holds: 
 

( ) ( ) ( )γxeγxx0 ,, s

M +== FF  (3) 

 

where γn
ℜ∈γ  is the model parameter vector and 

)(⋅se  describes the modelling error.  

 

It is assumed that the modelling error bounds 
max

se and min

se are known so that 

 

( ) xma
ss

min
s , eγxee ≤≤  (4) 

 

The static network model used via (2), (3) and (4) 

enables us to bound sets of possible variable and 

parameter values to such that satisfy the inequality: 
 

( ) min

s

Mmax

s , eγxe −≤≤− F  (5) 

 

The inequality (5) with ( ) ,...2,1j,j =x , bounds the 

variables and parameters at the stage j. By adding to 

this inequality known pointwise a priori bounds on 

the estimated variables and parameters 

( ) ( ) ( )jjj
maxmin

xxx ≤≤  and maxmin γγγ ≤≤  the 
static a priori knowledge at time step j is obtained 

that can be shortly written as 
 

( )( ) 0γx ≤,jD  (6) 

 

where D  is suitably defined operator. 
 

The network dynamics is composed of the element 

dynamics linked by intermediate variables as: 
 

( ) ( )( ) K,2,1j;j,j1j ==+ xs f  (7) 

 

As previously, an approximate model ( )⋅M
f  of 

( )⋅f  together with the modelling error ( )j,,d γxe  

bounds )j(
max
de  and ( )jmin

de , respectively is only 

available. The inequalities can then be written that 

robustly bound the estimated quantities at j as: 
 

( ) ( ) ( )( ) ( )jj,,jf1jj
max

d

Mmin

d eγxse ≤−+≤ <  (8) 

 

yielding the dynamic a priori knowledge at stage j.  

The models are assumed parametric as opposed to 

point - parametric models (Chang et al., 2004). It 

means that there exist constant parameter vector 
∗γ and the modelling error mappings ( )⋅∗

se  and 

( )⋅∗
de  such that for any external inputs from an 

admissible set the following holds over a control 

horizon: 
 

( )( ) ( )( ) ( )( )∗∗∗∗∗ += γxeγxx ,j,jj s

MFF  

( )( ) ( )( ) ( )j,),j(j,,jfj,jf d

M ∗∗∗∗∗ += γxeγxx  

( )( ) xma
ss

min
s ,j eγxee ≤≤ ∗∗  

( )( ) xma
dd

min
d ,j eγxee ≤≤ ∗∗  

(9) 

 

where ( )j∗x  is the network variable trajectory over 

the control horizon. The vector ∗γ will be further 

called the real parameter vector. 
 

Only small part of the variable set is directly 

measured. Let z  denote vector of the measured 

variables. Clearly, xz ⊂ . The measurements are 

taken at the discrete time instants j corresponding to 

the time steps of the network dynamic model (6). The 

measurement set available at time stage k is: 
 

( ) ( ) ( ) ( )[ ]TTmTmTmm
k,....,j,..,1k zzzZ =  (10) 

 

The measurements are contaminated by noise 

( )jme and ( ) ( ) ( )jjj mm ezz += , .k:j 1∈  The 

noise is lower and upper bounded with know 

∞L bounds ( )jmin,me  and ( )jma,m xe , respectively. 

Hence, the following holds for k:j 1∈ : 

 



( ) ( ) ( ) ( ) ( )jjjjj min,mmmax,mm ezzez −≤≤−  (11) 

 

The inequalities (11) over k:j 1∈ constitute overall 

information about the variables and parameters 

available at k from the measurements gathered till k. 

We shall call it the measurement information at time 

step k. Let )(kX be a vector of trajectories of the 

estimated variables over k:j 1∈ . That is 

 

( ) ( ) ( ) ( )[ ]TTTT
k,,j,,1k xxxX KK=  (12) 

 

The inequalities (11) can now be briefly written as 
 

( ) ( )( ) 0X ≤kkM  (13) 
 

where ( )⋅M  is a suitably defined operator. We shall 

also introduce operator ( )km  to define the 

measurement inequality ( ) ( )( ) 0x ≤kkm  only at k: 

 

( ) ( ) ( ) ( ) ( )kkkkk min,mmma,mm ezzez −≤≤− x  (14) 

 

 

2.2 Dynamic Joint Variable and Parameter Batch 

Estimation 
 

At the time instant k we shall define a set ( )kΩ  of all 

variable trajectories ( )kX  and parameters γ  that are 

consistent with the measurement and a priori 

information over time period k1 : which is available 

at k. Hence, the following holds: 
 

( ) ( ) ( )( ){

( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )}jj,,jf1jj

;k:1j,,j;kk

1k,,kk

d

M

d

maxmin

DM

:

eγxse

0γx0X

sγXΩ

≤−+≤

=≤≤

+=

 
(15) 

 

The state ( )ks  is estimated as a component of the 

vector ( )kx . The state ( )1+ks  participates in the 

definition of the set ( )kΩ  as the inequality (8) with 

kj =  contributes to knowledge at k about ( )kx  and 

( )1+ks  is present in (8). However, as opposed to 

( ) γx ,k , estimating ( )1+ks  at k means predicting the 

state. Let ( ) ( )( ) ( )kk,,k ΩsγX ∈+1 . Regarding 

available at k the static, dynamic and measurement 

information, a set  
 

( ) ( ) ( ) ( )( ){ }1
∆

)1( +=+ k,,kkk,,k sγxΩ sγx  (16) 

 

is the smallest set where it is guaranteed that the 

estimated quantities )}(),({ k,k
∗∗∗ sγx  belong to. 

Unfortunately, a topological structure of this set is 

complicated even for linear networks. Hence, for 

practical reasons we shall take its outer 

approximation that can be realistically determined as 

the set estimate at k. The outer approximation is 

defined by taking orthogonal projections of 

( ) ( )kk,,k )1( +sγxΩ  on the subspaces of ( )kxi , ( )1+ksi  

and iγ . This results in producing the intervals 

( ) ( ) ( ) ( )]11[][ x ++ ks,ks,kx,kx
ma
i

min
i

max
i

min
i , and 

( ) ( )][ k,k
max
i

min
i γγ  bounding at k the ( )kxi

∗ , ( )1+∗
ksi  

and ∗
iγ . The intervals are determined by solving the 

following optimisation tasks: 
 

)())1()((

))}1(

()())1()(({)( 0

kk,,ktosubject

ksor

orkxk,,kfmaxmin

i

ii

ΩsγX

sγX

∈+

+

=+ γ

 (17) 

 

The Cartesian products of these intervals yield the 

sets ( )( )kkxΩ , ( )k)k( 1+sΩ  and ( )kγΩ  respectively 

that are outer approximations of the smallest sets 

bounding ( ) ( )1+∗∗
k,k sx  and .

∗γ Clearly, the 

following also holds: 
 

( ) ( ) ( )( ) ( ) ( )kkkk )1k(k)1k(,,k ++ ××⊂ sγxsγx ΩΩΩΩ  (18) 

 

 

3. RECURSIVE ESTIMATION 
 

The formulation (15) and (17) called the batch 

estimation is not suitable for on line applications. We 

shall now derive a recursive formulation. Let us 

compare the sets ( )kΩΩΩΩ  and ( )1k −ΩΩΩΩ  that constitute 

the information bases for the estimation at k and k-1, 

respectively. New information available at k is the 

measurement information gathered at k. Moreover, at 

k the new variables occur ( )kx  and ( )1k +s to be 

estimated. This new information can be then 

expressed as: 
 

( ) ( ) ( )( ){

( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )}kk,,kf1kk

,kkm,,k

:1k,,kk

d

M

d

maxmin             

D             

eγxse

0x0γx

sγxω

≤−+≤

≤≤

+=
 

(19) 

 

The set ( )kΩΩΩΩ  can now be written in the recursive 

form as: 
 

( ) ( ) ( )( ){

( ) ( )( ) ( )

( ) ( )( ) ( )}k1k,,k

,1kk,,1k

:1k,,kk

ωsγx

sγX

sγX

∈+

−∈−

+=

                 

                 ΩΩΩΩ

ΩΩΩΩ
 

(20) 

 

and the recursive form of the estimation tasks at k 

read: 
 

( ) ( ) ( )( ) ( ) ({

( ))}

( ) ( )( )

( )

( ) ( )1kk

1k

k1k,,ktosubject

1ksor

orkx1k,,kfmaxmin

)k(

i

ii0

−∈

−∈

∈+

+

=+

s

γ

s

γ

ωsγx

sγX

ΩΩΩΩ

ΩΩΩΩ

                     

                     

)(

                                                                  

γ

 

(21) 

 

where the set estimates ( )1k −γΩΩΩΩ  and ( )1kk −)(sΩΩΩΩ  

are known from the estimation at k-1. 



Notice that due to (18) there is a conservatism in the 

estimates defined by (21) when compared to the 

batch estimates and this is the price to be paid for the 

recursive structure of the estimation algorithm. This 

conservatism may produce an unstable process of 

generating the points that are not consistent with the 

available information. The stability may be regained 

by directly introducing a number of past 

measurements into the estimation task that is 

performed at k. They form a measurement window 

with L past measurements. In the recursive algorithm 

(20), L=0. Since the measurement information is 

coupled with the priori information through the 

model (see (15)), overall information that is utilised 

for the estimation at k can be decomposed into the 

information used to perform the estimation at k-L-1 

and the new information over the window 

( )kLk ,−ω . Hence, 

 

( ) ( ) ( )( ){

( )( )

( ) ( )( )

( ) ( ) ( )( ) ( )}jk,,jf1jj

;k,Lkk,Lk

;k:Lkj,,j

:1k,,k,Lkk,Lk

d

M

d

maxmin

M

D

eγxse

0X

0x

sγXω

≤−+≤

≤−−

−∈≤

+−=−

γ  
(22) 

 

where ( )kLk ,−X  is a set of all variable trajectories 

over kLk :− . 
 

Hence, the information base ( )kΩΩΩΩ for the estimation 

performed at k can be written as: 
 

( ) ( ) ( )( ){

( ) ( )( ) ( )

( ) ( )( ) ( )}k1k,,k,Lk

1LkLk,,1Lk

:1k,,kk

ωsγX

sγX

sγX

∈+−

−−∈−−−

+=

             

             ΩΩΩΩ

ΩΩΩΩ
 

(23) 

 

where set ( )1Lk −−ΩΩΩΩ  is the information base for the 

estimation task that is solved at k-L-1. 
 

Notice that knowledge about the parameter γ a nd 

state )( Lks − gathered as a result of the estimation 

performed at k-L-1 and based on the set ( )1Lk −−ΩΩΩΩ  

is expressed by the sets ( )( )1Lk1Lk −−−−xΩΩΩΩ , 

( )1Lk −−γΩΩΩΩ  and ( )1LkLk −−− )(sΩΩΩΩ . The first set has 

no influence on the estimation results at k. Hence, the 

recursive algorithm with moving measurement 

window of the length can be formulated at k as: 
 

( ) ( ) ( )( ) ( ){

( )( )}

( ) ( )( ) ( )

( )

( ) ( )                        

                   

                                               

1LkLk

1Lk

k,Lk1k,,k,Lktosubject

1koror

kx1k,,k,Lkfmaxmin

)Lk(

ii

i0

−−∈−

−−∈

−∈+−

+

=+−

−s

γ

s

γ

ωsγX

sγ

sγX

ΩΩΩΩ

ΩΩΩΩ

 
(24) 

 

The sets ( )1LkLk −−− )(sΩΩΩΩ  ( )1Lk −−γΩΩΩΩ  come from 

the estimation performed at k-L-1. 
 

Let us notice that the original information 

inequalities but not their external approximations are 

processed over the window. This has, the pointed out 

above, stabilising impact on the estimates. The 

prediction ( )k1k )( +sΩΩΩΩ  of the state ( )1k +s  determined 

at k will be used during the estimation carried out at 

k+L+1 as an estimate of the initial condition. At k+1 

the window moves ahead by one time step and the 

state ( )1k +s  will enter the window. Hence, the set 

( )k1k )( +sΩΩΩΩ  can be used at k+1 as an additional 

constraint bounding ( )ks . Introducing the constraint 

 

( ) ( )1kk )k( −∈ ss ΩΩΩΩ  (25) 

 

into the constraint set of (24) does this.  
 

Remaining within the window for some time creates 

an opportunity for smoothing the past estimates 

based on new measurement information. However, 

this requires solving additional optimisation tasks. 

The smoothing although expensive may vastly 

improve the estimate tightness. We shall limit our 

consideration to exploiting only one possibility. 

During estimation performed at k the state 

( )1Lk +−s  becomes an initial state condition for the 

estimation to be carried out at k+1. It is therefore 

beneficial for the estimation performance at k+1 to 

estimate this state also at k. By including this and 

(25) into (24) the following estimation algorithm is 

obtained: 
 

( ) ( ) ( )( ) ( ){

( ) ( )}

( ) ( )( ) ( )

( )

( ) ( )

( ) ( )1kk

1LkLk

1Lk

k,Lk1k,,k,Lk

tosubject

1koror1Lksor

kx1k,,k,Lkfmaxmin

)k(

)Lk(

iii

i0

−∈

−−∈−

−−∈

−∈+−

++−

=+−

−

s

s

γ

s

s

γ

ωsγX

sγ

sγX

ΩΩΩΩ

ΩΩΩΩ

ΩΩΩΩ

           

           

           

           

                         

 

(26) 

 

As that then ( ) ( )1k1Lk kLk −=−−− )()( ss ΩΩΩΩΩΩΩΩ  if L=0. 

A routine state prediction is then sufficient in (26). 

Hence, the beneficial smoothing of the initial 

condition can be achieved only when the moving 

measurement window is applied to the estimation 

algorithm. 
 

 

4.CASE STUDY SIMULATION RESULTS 
 

A case study drinking water network will be 

investigated. Modelling the network hydraulics for 

operational purposes is presented in (Brdys and 

Chen, 1996). The network variables to be monitored 

are flows through the pipes, pressures at the network 

and tank nodes and water demands. The pipe 

resistances are the model parameters. The 

measurements are typically limited due to cost of 

sensor maintenance and unmeasured quantities need 



to be estimated by using the model and hard 

measurements. A skeleton of the system located in 

Lebork (Poland) is shown in Fig. 1. 
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Fig.  1. Lebork case study network 
 

A simple recursive algorithm with L=0 and a 

recursive estimation with moving measurement 

window of the window length L=2 were applied to 

estimate pipe flows, nodal heads and the pipe 

resistances. The results are shown in Figs. 2-11. 
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Fig. 2. Estimated bounds on resistance of pipe 17_18; 

L = 0 
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Fig. 3. Estimated bounds on resistance of pipe 17_18; 

L = 2 
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Fig. 4. Estimated bounds on pipe flow Q17_18; L= 0 
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Fig. 5. Estimated bounds on pipe flow Q17_18; L = 2 
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Fig. 6. Estimated bounds on tank level; L = 0 
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Fig. 7. Estimated bounds on tank level; L = 2 
 

The optimisation tasks (26) were first converted into 

an approximated piecewise linear form and then 

solved by applying a mixed integer linear solver 

(Brdys et al., 2001) to produce wanted global optima. 

The linearisation error was handled by introducing 

the error into formulation of the estimation problem 

priori information as a modelling error. 
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Fig. 8. Estimated bounds on nodal head H17; L = 0 
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Fig. 9. Estimated bounds on nodal head H17; L = 2 
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Fig. 10. Estimated bounds on nodal head H29; L = 0 
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Fig. 11. Estimated bounds on nodal head H29; L = 2 
 

As expected, better estimates are produced for L=2. 

Nevertheless, an approach to selection of the 

appropriate values for windows length L needs 

further investigations. 

 

 

6. CONCLUSIONS 

 

The paper has considered set-membership joint 

estimation of variables and parameters in dynamic 

networks. The recursive estimation algorithm 

suitable for on line network monitoring has been 

derived. It has been validated on a case-study water 

distribution network. The results have shown 

significant improvements of the estimates produced 

by estimation with the moving measurement window. 

Analysis of rigorous criteria for selection of the 

window length in order to reach a desired trade off 

between the estimation accuracy and computing 

effort are under research. Application of the recursive 

algorithm with moving measurement window to joint 

estimation of integrated quality and quantity in 

complex drinking water distribution networks has 

been continuing in (Duzinkiewicz, 2005).  
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