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Abstract: This paper presents an approach to design observer-based fault detection
(FD) systems for continuous linear time-invariant systems directly from frequency
domain data. The design doesn’t need knowledge of system model. The computation
mainly consists in a singular value decomposition (SVD) and a QR decomposition.
The proposed approach is finally illustrated by an example. Copyright c©2005 IFAC
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1. INTRODUCTION

With the increasing requirement of modern com-
plex control systems on safety and reliability,
fault detection (FD) technique has received much
attention since the seventies and achieved con-
siderable theoretical development (Willsky, 1976;
Gertler, 1998; Chen and Patton, 1999; Frank
et al., 2000; Patton et al., 2000). Applications
have been found in automobile industry, process
industry, transportation systems, aerospace and
aeronautics, etc. The basic idea of model-based
FD is to generate analytical redundancy with
the help of mathematical model of supervised
systems. Observer-based FD is one of the most
important kinds of model-based FD approaches
(Gertler, 1998; Chen and Patton, 1999; Patton
et al., 2000). The central part of an observer-
based FD system is an output observer. The fault-
indicating signal, usually called residual, is ob-
tained by comparing the measured outputs with
their estimations. In the context of both discrete
and continuous linear time-invariant (LTI) sys-
tems, a number of approaches have been proposed
for the design of observer-based FD systems. A
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standard assumption is that a model of the super-
vised system is available. If it is not the case, then
an identification of the system model is necessary.
Inspired by the significant development of sub-
space identification, in this paper it is shown that
for continuous LTI systems, without identifying
system model, an observer-based FD system can
be directly obtained from frequency domain data.

Since the nineties, subspace identification ap-
proaches have been developed (Van Overschee and
De Moor, 1996b; Favoreel et al., 2000). The ad-
vantage of subspace approaches is to directly get
a state space model from the process input and
output data. The subspace methods don’t need to
parametrize the model set and to solve nonlinear
parametric optimization problems. Thus the com-
putation is straightforward and there is no con-
vergence problem (Van Overschee and De Moor,
1996b; Favoreel et al., 2000; Li and Qin, 2001).

In the field of fault detection, Basseville et al.
(2000) has first applied the subspace identifica-
tion methods to develop FD algorithms aiming
at detect changes in the system eigenstructure.
Ding et al. (2004) have shown that for discrete
LTI systems an observer-based FD system can



be directly obtained from the system input and
output data in the time domain, instead of iden-
tifying the model of the system at first. However,
it is difficult to transfer this approach directly to
continuous LTI systems, because the derivatives
of input and output are usually not measurable
and can only be approximated by, for instance,
the numerical integrator (Li et al., 2003).

Motivated by the frequency domain subspace
identification methods (Van Overschee and De
Moor, 1996a; Mckelvey et al., 1996a; Mckelvey
et al., 1996b; Van Overschee et al., 1997; Yang
and Sanada, 2000; Pintelon, 2002; Akcay and
Turkay, 2004), this paper shows that the principle
developed by Ding et al. (2004) can be extended to
continuous LTI systems if the frequency domain
data instead of the time domain data is used.
Indeed, in practice, the frequency domain data are
often available at some discrete set of frequencies.
Modern sophisticated data analyzers and data
acquisition equipment also allow large amounts of
time domain data to be compressed into frequency
domain data of high quality (Van Overschee and
De Moor, 1996a; Mckelvey et al., 1996a; Mckelvey
et al., 1996b).

2. PROBLEM FORMULATION

Consider the fault detection problem of continu-
ous LTI systems described by

ẋ(t) = Ax(t) + Bu(t) + Eff(t)

y(t) = Cx(t) + Du(t) + Fff(t) (1)

where x ∈ Rn denotes the state vector, u ∈ Rku

the control input vector, y ∈ Rm the measured
output vector, and f ∈ Rkf the vector of faults to
be detected, A,B,C,D,Ef , Ff are constant but
unknown matrices of compatible dimensions.

It is well-known that given an LTI system in
the form of (Chen and Patton, 1999; Frank et
al., 2000; Patton et al., 2000)

qx = Ax + Bu + Eff

y = Cx + Du + Fff (2)

where q denotes either the derivative operation for
continuous-time signals or the difference operation
for discrete-time signals, the dynamic system

qz = Gz + Ju + Ly

r = wz + pu + vy (3)

can be used to generate a residual signal r, i.e.
∀u, limk→∞ r(k) = 0 if f = 0 and r deviates
from zero as long as f �= 0, if G is stable and
there exists a matrix T so that equations

TA − GT = LC, vC + wT = 0

TB − LD = J, p + vD = 0 (4)

are satisfied.

In the following, a lemma is introduced which
motivates the work in this paper (Ding et al.,
1998; Ding et al., 2004).

Lemma Assume that matrices A ∈ Rn×n, B ∈
Rn×ku , C ∈ Rm×n,D ∈ Rm×ku . If vectors

vs =
[
vs,0 vs,1 · · · vs,s

]
, vs,i ∈ R1×m (5)

and

vsHs =
[
ρ0 ρ1 · · · ρs

]
, ρi ∈ R1×ku (6)

are known, where

Hs =

⎡
⎢⎢⎢⎢⎣

D 0 · · · 0

CB D
. . .

...
...

. . . . . . 0
CAs−1B · · · CB D

⎤
⎥⎥⎥⎥⎦

and vs satisfies

vs

⎡
⎢⎢⎢⎣

C
CA
...

CAs

⎤
⎥⎥⎥⎦ = 0, (7)

then there exists a matrix

T =

⎡
⎢⎢⎢⎣

vs,1 · · · vs,s−1 vs,s

vs,2 · · · vs,s 0
...

...
vs,s 0 · · · 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

C
CA
...

CAs−1

⎤
⎥⎥⎥⎦

so that G, J, L,w, p, v defined by

G =

⎡
⎢⎢⎢⎣

0 · · · 0 g1

1 · · · 0 g2

...
...

0 · · · 1 gs

⎤
⎥⎥⎥⎦ (8)

J =

⎡
⎢⎢⎢⎣

ρ0

ρ1
...

ρs−1

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

g1

g2

...
gs

⎤
⎥⎥⎥⎦ ρs

L =−

⎡
⎢⎢⎢⎣

vs,0

vs,1

...
vs,s−1

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎣

g1

g2

...
gs

⎤
⎥⎥⎥⎦ vs,s

w =
[
0 · · · 0 −1

]
p =−ρs

v = vs,s

with g1, g2, · · · , gs being free selectable constants
satisfy equations (4).

Note that matrices G, J, L,w, p, v in (8) are en-
tirely determined by the components of vectors



vs, vsHs and free parameters g1, · · · , gs. The
lemma indicates that once vectors vs and vsHs

are known with vs satisfying (7) and free pa-
rameters g1, · · · , gs are chosen, then parameters
G, J, L,w, p, v satisfying equations (4) can be di-
rectly computed without knowledge of A,B,C,D
(and T ). Since G is in the canonical form, it is
easy to get g1, · · · , gs which ensure the stability
of matrix G (Kailath, 1980).

The lemma is proven and initially used by Ding et
al. (2004) to design a discrete observer-based FD
system in the form of (3) for discrete LTI systems
directly from process input and output data in the
time domain. This paper shows that a continuous
observer-based FD system (3) can be obtained for
continuous LTI systems by using the frequency
domain data.

The problem to be solved in this paper is for-
mulated as: Given frequency domain samples
G(jω1), G(jω2), · · · , G(jωN ) of system (1) in nor-
mal operations, determine an observer-based FD
system.

3. DESIGN APPROACH

In this section, an approach is presented which
leads to an observer-based FD system from the
frequency domain data.

3.1 Basic idea

The frequency domain dynamics of system (1) in
normal operations (f = 0) is governed by

jωX(jω) = AX(jω) + BU(jω)

Y (jω) = CX(jω) + DU(jω) (9)

where j is the imaginary unit. From (9), it yields

jωY (jω) = CAX(jω) + CBU(jω) + jωDU(jω)

(jω)2Y (jω) = CA2X(jω) + CABU(jω)

+CBjωU(jω) + (jω)2DU(jω)
...

which can be summarized in the matrix form as⎡
⎢⎢⎢⎣

Y (jω)
jωY (jω)

...
(jω)sY (jω)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

C
CA
...

CAs

⎤
⎥⎥⎥⎦ X(jω)+

⎡
⎢⎢⎢⎢⎣

D 0 · · · 0

CB D
. . .

...
...

. . . . . . 0
CAs−1B · · · CB D

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

U(jω)
jωU(jω)

...
(jω)sU(jω)

⎤
⎥⎥⎥⎦

where s is an integer.

Denote by G(jω) the frequency response of sys-
tem (1) to the control input. It is evident that
Y (jω) = G(jω) when U(jω) = I (identity matrix
of dimension ku × ku). Given frequency response
G(jω) at different frequencies ω1, ω2, · · · , ωN , the
following relation

GN = HoXN + HsIN (10)

holds, where

GN =

⎡
⎢⎢⎢⎣

G(jω1) · · · G(jωN )
jω1G(jω1) jωNG(jωN )

...
...

(jω1)sG(jω1) · · · (jωN )sG(jωN )

⎤
⎥⎥⎥⎦

XN =
[
X(jω1) · · · X(jωN )

]

IN =

⎡
⎢⎢⎢⎣

I · · · I
jω1I jωNI

...
...

(jω1)sI · · · (jωN )sI

⎤
⎥⎥⎥⎦ (11)

Ho =

⎡
⎢⎢⎢⎣

C
CA
...

CAs

⎤
⎥⎥⎥⎦

Hs =

⎡
⎢⎢⎢⎢⎣

D 0 · · · 0

CB D
. . .

...
...

. . . . . . 0
CAs−1B · · · CB D

⎤
⎥⎥⎥⎥⎦

Let

ḠN =
[
Re(GN ) Im(GN )

]
X̄N =

[
Re(XN ) Im(XN )

]
ĪN =

[
Re(IN ) Im(IN )

]
(12)

Since Ho,Hs are real matrices, there is

ḠN = HoX̄N + HsĪN (13)

In the next, we show that based on (13) a vector
vs satisfying (7) (i.e. in the left null space of Ho)
and vsHs can be identified. After this is done,
an observer-based FD system can be readily con-
structed for system (1) according to the lemma.

Equation (13) can be re-written as[
ḠN

ĪN

]
=

[
Ho Hs

O I

] [
X̄N

ĪN

]

Because matrix
[

X̄N

ĪN

]
is of full row rank,

[
ḠN

ĪN

]

and
[

Ho Hs

O I

]
have the same left null space.

Assume that there is the following singular value
decomposition (SVD)[

ḠN

ĪN

]
= U

[
S O
O O

]
V ′ (14)



with orthogonal matrices

U =
[
U1 U2

]
, V =

[
V1 V2

]
then U ′

2 builds the basis of the left null space of[
ḠN

ĪN

]
and also that of

[
Ho Hs

O I

]
.

Partition U ′
2 as

U ′
2 =

[
UΣ1 UΣ2

]
Because

U ′
2

[
Ho Hs

O I

]

=
[
UΣ1 UΣ2

] [
Ho Hs

O I

]
= 0

there is

UΣ1Ho = 0,

UΣ1Hs =−UΣ2 (15)

So one vector vs satisfying (7) and the correspond-
ing vector vsHs can be chosen as

vs = αUΣ1

vsHs =−αUΣ2 (16)

where α is any nonzero row vector of compatible
dimensions.

3.2 Order selection

It can be seen that the order of the resulting
observer is equal to s. The smaller s is, the less the
online computation efforts the FD system needs.
On the other side, to identify vs and vsHs, usually
s is selected much higher than the system order
to ensure that Ho is not of full row rank and there
exists UΣ1 satisfying UΣ1Ho = 0.

Note that if vector α is selected in such a way that
vs has the following structure

vs =
[
vs,0 · · · vs,ν 0 · · · 0

]
(17)

where ν < s, then

vsHs =
[
ρ0 · · · ρν 0 · · · 0

]
(18)

and the order of the observer can be reduced to
ν, since

vs

⎡
⎢⎢⎢⎣

C
CA
...

CAs

⎤
⎥⎥⎥⎦ =

[
vs,0 vs,1 · · · vs,ν

]
⎡
⎢⎢⎢⎣

C
CA
...

CAν

⎤
⎥⎥⎥⎦ = 0

According to the lemma, the observer-based FD
system can be constructed based on v̄s and v̄sHs

defined by

v̄s =
[
vs,0 vs,1 · · · vs,ν

]
v̄sHs =

[
ρ0 · · · ρν

]
(19)

One of the ways to find such a vector α is by the
QR factorisation. Let UΣ1 be factorised as

UΣ1 = UQUR (20)

with UQ unitary and the right upper triangular
block of UR being zero. If α is setted as the first
row of U ′

Q, then αUΣ1 will be the first row of UR

and thus has the most zero elements due to the
relation UR = U ′

QUΣ1.

3.3 Algorithm

In summary, an observer-based FD system in the
form of

ż(t) = Gz(t) + Ju(t) + Ly(t)

r(t) = wz(t) + pu(t) + vy(t) (21)

can be designed for continuous LTI system (1),
whose model is unknown, based on frequency
response samples G(jω1), G(jω2), · · · , G(jωN ) in
normal operations as below:

• Set the value of s.

• Build matrices ḠN , ĪN by (11) and (12).

• Do the SVD of
[

ḠN

ĪN

]
as (14) to get matrix U2.

• Partition U ′
2 as

[
UΣ1 UΣ2

]
.

• Do the QR factorization as (20) and set α to
the first row of U ′

Q.

• Compute vectors vs, vsHs by (16).

• Choose g1, g2, · · · , gs so that all eigenvalues of
G are on the left complex plane.

• Compute G, J, L,w, p, v according to (8).

The numerical property of the algorithm can
be further improved by applying the w-operator
approach like (Yang and Sanada, 2000).

4. EXAMPLE

To illustrate the algorithm, consider an example of
a 3rd-order system, whose model is unknown. 200
samples of the frequency response of the system
are collected with the frequency ω1, ω2, · · · , ωN ,
N = 200, varying from 0.05 to 10 rad/s equidis-
tantly (as shown in Fig.1-2). The model used for
generating the frequency response data is indeed

ẋ =

⎡
⎣ 0 0.5 1
−1 −1 0.25
1 0.25 −2

⎤
⎦x +

⎡
⎣ 1 1

1 0
0 1

⎤
⎦ u +

⎡
⎣ 0 0

1 0
0 0

⎤
⎦ f

y =
[
1 1 0

]
x +

[
1 1.5

]
u +

[
0 1

]
f (22)

Set s = 9. To apply the proposed algorithm, first
build matrices ḠN ∈ R10×800, ĪN ∈ R20×800



as (11). Do the SVD of
[

ḠN

ĪN

]
and get matrix

U2 ∈ R30×7. Partition U ′
2 into UΣ1 ∈ R7×10,

UΣ2 ∈ R7×20. Doing the QR factorization UΣ1 =
UQUR yields

UQ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0008 0.0019 0.0017 0.0011
−0.0014 −0.0036 −0.0030 −0.0063
0.0199 0.0052 0.0030 −0.0952
0.3188 0.7049 0.6232 −0.1121
0.0731 −0.0902 −0.1153 −0.9819
0.9339 −0.3292 −0.0857 0.1104
0.1434 0.6217 −0.7688 0.0438
0.0064 0.1753 −0.9845
−0.0385 −0.9837 −0.1755
−0.9945 0.0394 0.0005
0.0225 −0.0055 0.0017
0.0948 0.0032 −0.0002
0.0061 −0.0008 −0.0000
−0.0004 −0.0004 −0.0001

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

UR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0107 0.1234 0.2576 0.0859
0.0088 0.0877 0.0522 −0.2630
0.0063 0.0588 0.0089 −0.1030
−0.0042 −0.0380 0.0018 0.0462
0.0027 0.0238 −0.0036 −0.0221
0.0016 0.0144 −0.0031 −0.0110
0.0010 0.0086 −0.0022 −0.0056

0 0 0 0 0 0
−0.1112 0 0 0 0 0
0.2567 0.1221 0 0 0 0
−0.1183 0.2524 0.1267 0 0 0
0.0589 −0.1231 0.2503 0.1284 0 0
0.0304 −0.0631 0.1246 −0.2494 −0.1291 0
0.0161 −0.0332 0.0645 −0.1250 0.2490 0.1293

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Select α as the first row of U ′
Q, namely,

α =
[
0.0008 −0.0014 0.0199 0.3188

0.0731 0.9339 0.1434
]

As a result,

v̄s =
[
0.0107 0.1234 0.2576 0.0859

] ∈ R1×4

v̄sHs =
[
0.0483 0.0429 0.5098 0.4642 0.4293

0.4723 0.0859 0.1288
] ∈ R1×8

It is seen that ν = 3. By choosing g1 = −1,
g2 = −3, g3 = −3, an observer-based FD system
of 3rd order is obtained as

ż(t) =

⎡
⎣ 0 0 −1

1 0 −3
0 1 −3

⎤
⎦ z(t) +

⎡
⎣ 0.0751

0.1342
0.0000

⎤
⎦ y(t)

+

⎡
⎣−0.0376 −0.0859

0.2522 0.0778
0.1717 0.0859

⎤
⎦ u(t)

r(t) =
[
0 0 −1

]
z(t) + 0.0859y(t)

+
[−0.0859 −0.1288

]
u(t)

0 1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

4

4.5

5

Frequency

R
ea

l p
ar

t o
f t

he
 fr

eq
ue

nc
y 

re
sp

on
se

G
u1

G
u2

Fig. 1. Real part of the frequency domain data
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Fig. 2. Imaginary part of the frequency domain
data

In the simulation, it is assumed that the control
inputs are, respectively, a step signal (step time at
0s) of amplitude 1 and a sine function sin t. Two
kinds of faults have been simulated. In the first
case, consider a component fault f =

[
f1(t) 0

]′,
where f1(t) is a step signal (step time at 50s)
of amplitude 1. The residual signal is shown in
Fig. 3. In the second case, consider a sensor fault
f =

[
0 f2(t)

]′, where f2(t) is a step signal (step
time at 50s) of amplitude 1. The residual signal
is shown in Fig. 4. It is seen that in both cases
the residual keeps to be 0 in the fault-free case
and deviates from 0 after the fault happens, which
enables a quick detection of the fault.

5. CONCLUSION

This paper proposes a model-free design approach
of observer-based FD systems for continuous lin-
ear time-invariant systems. First, two vectors vs

and vsHs are identified from the frequency do-
main data. Then, an observer-based FD system is
readily constructed. The proposed approach is ap-
plicable to data with arbitrary frequency spacing.
The design procedure is illustrated by a numerical
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case
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Fig. 4. The residual signal in the sensor fault case

example. An extension of the proposed approach
to cope with noise-corrupted frequency domain
data is an important topic of the future research.
For the aim of fault isolation, it is also necessary
to extend the approach to handle systems with
deterministic disturbances. Study in this respect
is being carried out.
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