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Abstract: Dynamic optimization by multiple shooting res integration and sensitivity
calculation. A new semi-implicit Runge-Kutta algorithnr faumerical sensitivity calcu-
lation of index-1 DAE systems is presented. The algorithfoutates sensitivities with
respect to problem parameters and initial conditions,@tipy the special structure of
the sensitivity equations. The algorithm is a one-step oethhich makes it especially
efficient compared to multiple-step methods when frequésdoatinuities are present.
These advantages render the new algorithm particulatigtseifor dynamic optimization
and nonlinear model predictive control. The algorithm stéd on the Dow Chemicals
benchmark problenCopyright(©?2005 IFAC
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1. INTRODUCTION ing multiple shooting (Bindeet al, 2001; Jgrgensen
et al, 2004). The overall efficiency of the multiple

Sensitivity analysis for DAE systems is important shooting optimal control algorithm depends critically
in many engineering and scientific applications. It is on the efficiency of the procedure for integration and
useful in gradient based optimization of systems de- sensitivity calculation as most of the computational
scribed by differential algebraic equations. Such ap- effort is spent in this part of the program.
plications include parameter estimation (prediction- _ _ i i ) )
error-estimation), dynamic optimization (optimal con- '€ @lgorithm is applicable to index-1 differential
trol) and experimental design. Furthermore, sensitiv- 2/9€braic equations in semi-explicit form
ity analysis finds applications within model reduction.

In this paper, we present an algorithm for solution x(t) = £(t,x(1), 2(¢), w) (1a)
of index-1 DAE systems and simultaneous computa- 0 = g(t,x(t),z(t),u) (1b)
tion of the sensitivities. The algorithm is an extension x(to) = Xo (1c)

of the ESDIRK algorithm (Alexander, 2003; Kris-
tensenet al, 2004; Kristensenet al, 2004) and % is assumed to be non-singular. The solution of

is motivated by optimal control problems solved us- this system is denotedk(t) = x(t;xo,u) and
z(t) = z(t; %0, u). The state sensitivities,; ,,(t) =
9 <(t: — 9 4(¢:

1 Corresponding author. E-mail: jbj@2-control.com. Phoné5 8XOX(t,x0,u) and s, (t) = 8sz(t,x0,u), are

70 222 404 given by the linear differential algebraic system



S1.00 = <8f) Su.z0 + <ﬁ> Sz (23) x(t) = £(t,x(t), z(t), ug) (72)

ox oz 0 = g(t,x(t),2(t), ux) (70)
0= (G2) st (52 )0 0 XU) =Xk o
ox Oz and the operator
Sz.20(0) =1 (2¢)

tet1
Similarly, the parameter sensitivities, denased, (¢) = (e, wk) = /tk At x(t), 2(t), wyt ()

0 (1. I : . .
sax(t;x0,u) ands. () = 55z(t; %o, u), are given  js computed by quadrature along the solution of the

by the linear differential algebraic system index-1 DAE system. Alternatively, it may be com-
) of of of puted by augmenting the DAE system by an extra
Szu = (a_x) Se,u + (E) Sz,u (%) state, i.ey = h(t,x(t),z(t),u) andy(ty) = 0. In

(3a) addition to evaluation off, (xx, uy ) andFy (xx, ux),
the solution of (6) by SQP methods require evaluation

0= 98 Sy + 98 S, u+ %8 of the gradients oF' i, (xy, u)
ox ’ 0z ’ ou
(3b) Ak = kaFk(Xk, uk) (93.)
Szu(0) =0 (3¢) B = Vi, Fio(xk, ur) (9b)
) L ) as well as the gradients &fj (xx, uy)
The method presented is an explicit singly diagonal
ar = Vo, H(xg, ug) (10a)

Runge-Kutta algorithm which simultaneously solves
(1)-(3) for the state and algebraic trajectorieg,) and ry = Vi, Hy(xp, ur) (10b)
z(t), as well as the state and parameter sensitivities,The gradientsA;, and By, are computed as the state
Sz,m0(t) @Nds; ., (t). The algorithm has been extended and parameter sensitivities of the index-1 DAE system
with a predictive step-length controller, and efficiently (7), i.e.A;, = Seao(ter1)” andBy = spu(trr1)?.
reuses the Jacobian used in solving (1) for solution of ¢, andr;, may be computed in a similar manner. This
the sensitivity equations, (2)-(3). In contrast to BDF motivates the need for efficient solution of index-1
methods, which are multi-step methods, the ESDIRK DAE systems and their sensitivities in optimal control
method is a one-step method which implies that it including nonlinear model predictive control.

is efficient for problems with frequent discontinu-

ities; e.g. zero-order-hold parameterized optimal con-
trol problems. 3. THE ESDIRK METHOD FOR DAE SYSTEMS

The algorithm presented here for joint state and sen-
sitivity integration is based on an ESDIRK method
2. OPTIMAL CONTROL BY MULTIPLE (Kristenseret al, 2004; Alexander, 2003). The algo-
SHOOTING rithm has been implemented in the code ESDIRK34
which treats index-1 DAE systems of the form (1).

As a motivating application for sensitivity computa- The ESDIRK integration scheme for the differential
tions for differential algebraic equations, consider the equations is

optimal Bolza problem ;
Xi =X, + hz aijf(tn + th, Xj, Zj, u)

ty
min = h(t,x(t),z(t),u(t))dt + L(x(t —
lmin 0= | Bt x(0),2(6) u(0)at + L)
(42) Xng1=Xn+ 0> bif(tn +cih, X, Zi,u) - (11)
st k() = £(t,x(1),2(1), u(t)) (4b) gt
0 = g(t,x(t),2(t),u(t)) (4c) 4
X(t()) = Xg (4d) ent1 =h Z dif(f'n + cih, X, Zi, )
=1
in which the controls are discretized using zero-order- j, which X; denotes the solution at thi¢h internal
hold stage(i = 1,2, 3, 4) of stepn ande is the error vector.

ut)=up ty <t<tp, k=0,1,...,N—1 (5) Z; must satisfy the algebraic equations

The corresponding discrete-time problem which can 0 =gltn +¢jh, X5, Z5,0), j=1,2,34 (12)

be solved by SQP techniques is The coefficients in (11) are presented in the Butcher
tableau
N-1 0 0
min ¢ = Z Hy(xk,u) + L(xy)  (63)
prd C2 |G21 7Y cl A
. C3 |as1 asz2 7y _ TvT
s.t. Xk+1 = Fk(xk,uk) (Gb) 1 bl bg b3 ~y = _%T_ (13)
The operatorF; (xx, ux) = x(tx+1), is computed as Xpt1| b1 b2 bs
the solution of an index-1 DAE system ent1|di do d3 dy




According to the tableau the solution to the first inter- For stage 2 the solution at, is used as starting
nal stage is explicitly given as the solution to the last guess, i_e_Zél) = z,. Experiments has been made
stage of the previous step. Solution of the nonlinear ysing an extrapolated value based on information from
equations in (11) requires an iterative procedure in the previous integration step, but without convincing
which the equations (12) are solved simultaneously. results. For stage 3 interpolation is made usifg
Following the integration scheme the full set of equa- andZ,, and the starting guess for stage 4 is based on

tions for theith internal stage is extrapolation fron¥, andZs.
|:)(()z:| _ |:):)n:| + hzaij . [f(?vgé]v éj.7U):|
=" (815, X4,Z5,u) 3.1 Sensitivities
1—1
= {X”} + hzaij . [f(Tj’Xj’ Zj’“)] ESDIRK34 uses a staggered direct approachto sen-

0 j=1 0 sitivity analysis (Caracotsios and Stewart, 1985). In
£(T;, X, Zi, ) the staggered direct approach the state and sensitivity

+ hy - [g(TZ—, X, Z, UJ integration is performed in a staggered fashion within

each integration step. First, the model states of the
DAE system are integrated frotp to ¢,, 1 after which
R(X;,Z;) = the linear sensitivity equations are solved directly us-

|:Xi:| B {Xn] . S . [f(Tj, X,.Z,;, u)} ing the current factorization of the iteration matrix.
0 0 £ 0
=t 3.1.1. State Sensitivities The state sensitivities are
— hy - {f(Tiv X, Zi, “)] =0 derived by differentiation of the discrete formula (11)
g(Ti, Xi, Zi, u) with respect to the initial states. If we let the algebraic

The residual is equated to zero and solved via Newtonstates follow the integration scheme, tith stage
iterations gradient { = 2, 3, 4) is calculated as follows for one

VR(X(.k) ng))T. AX; integration step
L AZ; X; X
vx T :Vx n +
n |: O :| n |: O :|

inwhichT; = ¢,, + ¢;h. Inresidual form this becomes

= -R(x{",Z{")

i

[X““) x| [ax, .

i =i |+ ’ - £(1;,X;,Z;,u)
Z(-k+1) Z(k) |:AZL:| h ;i V% |: ( FEEAVERSVE :|
_— o ' ; 7o 8(Ty, X, 2, a)
in which the gradient oR is 7=

YR(X;, Z:) which yields

_ {I—lwvxf Ti, X, Zi, ) —/vag(TnXi,Ziyu)} [Vani 0} = [I 0]

T Ve (T3, X, Zin) —hyVag(Th, X, Zi, v) Vxf Vxg

+ hai [Vxnxn vxnzn} : {sz vzg:|

~ |:I - h’vaf(tnyxnyznyu) h"/vxg(tnyxnyznvu):| i1

| =PVt (tn, Xn, 20, 0)  —hyVag(tn, Xn, 2n, 1) < Vyf Vig

=M + h;“w (Vs Xj Vi, Zj] [sz Vzg]
in which M denotes the iteration matrix. This matrix Vif Vig
is formed from the Jacobian of the DAE system (1): +hy [V, Xi Vi, Zi] - V,f V,g

J— {fo sz] The last term is moved to the left hand side, and the
Vxg V.8 result is
~M

The solutions to the second, third and fourth internal

stages are calculated in the above fashion. Since the Vi Xi Vo, Z] - HI 0} i {fo ng”
solution to stage four equals the solution at the end " 00 Va.f Vg
point, no further calculations are needed and [I 0} h [I V. 2 } [fo ng]
= a;1 Xndn
[X4] _ |:Xn+1:| (14) - Vaf Vg
Z, Zn+1 - Vxf Vxg
h ii IV, X Vi, Zi] - | JF x

Each Newton iteration requires starting guesses for * ZGJ [V X5 V23] {sz Vzg]

. . j=2
all variables. Extrapolated values based on previous /

information is used as starting guesses for the alge-The derivatives of andg with respect taX; andZ;
braic variables. The distribution of nodes within each are approximated by the derivativesati.e.:
integration step is illustrated below:
fo(ﬂa Xi; Zi7 u) vxg(nv X’i; Zi? u)
" " " " |:vzf(Ti7X'i7Zi;u) vzg(TiaXi7Z’i;u):|
tn tn + c3h tn + c2h tni1 |V (tn, Xn, 2n, 1) Vig(tn, Xn, Zn, 1)
o |:vzf(f'n7 X’rL; Zn; u) vzg(fﬂru X’rL; Zn; u):|




fori = 2,3,4. SinceXy = x, 11 andZy = z,1, the
stage gradient¥,, X4 andVy, Z4 equals the desired
state sensitivities.

3.1.2. Parameter Sensitivities The parameter sensi-
tivities are derived in a similar fashion. By differentia-
tion of (11) with respect to the parameter veatcthe
ith stage gradient is

Xi _ Xn
v o] = 5]
: £(T;,X,,Z; u)]
RS 4V | o 70
; / |:g(Tj7XjaZjau>

which may be expressed as

Algorithm 1 ESDIRK34 (DAE) with Sensitivities
t =1, A =1,andBg = 0.
while t < t, + Ts do
If t +h >t + Tsthenh =t +Ts — ¢t end if.
Compute the Jacobian and the partial derivatives with aspe
to parameters
Compute iteration matrix

M =
I- h'yvxf(tn y Xn,2Zn, u) _h'vag(tn sy Xn, Zn, u)
—hyVof(tn, Xn, 2Zn,u) —hyV2g(tn,Xn,Zn,u)
(16)
and LU -factorize M.
Compute the internal stages iteratively for 2, 3, 4 using the

LU-factorization ofM.
while tol < ||R|| do

Compute the residual vect® and solve for{AXl]

[Vqu- O] = AZ;
Vxf Vxg
haﬂil |:|:vuxn vuzn} . [sz vzg:| + [Vuf vug}:| R(lezl) = |:)§)Z:| - |:x0n:|
i—1
Vxf Vxg i
+h Qij { VuX; VyZy| - [ ] + |[Vuf Vyu } | (T, X, Zg, )
j; J [ J J} sz Vzg [ g} - hzazj . g(T]]‘,X,jj, Z‘jﬁu) 17)
j=1
Vxf Vxg .
+ hy {[vuxi VuZi] - [sz Vzg} + [Vaf Vug]] M7 [i)z(] _ _Rx®, 7 (18)
The last term containing , X; andV,Z; is moved to (kt1) *)
the left hand side, and the resultis [ng+1)] = [ng) + Azi] (19)
~ M i i
end while
[Vqu‘ Vuzi} . H(I) g] — hy {g’ﬁ gxg” — Compute the error estimats, +1 and tolerance monitor:
z z8

hai [[0 Vuzn] . [gxg §x§:| * [Vuf Vug}] +
i—1
Jj=2

[Vuf Vug}} + hy [Vuf Vag]

The stage gradient¥ , X4 andV,Z, equal the de-
sired parameter sensitivities. Again, the derivatives of
f andg with respect toX; andZ; are approximated
by the derivatives at,, and a similar approximation is
made for the derivatives with respectio

vuf(Ti7 X’i; Zi7 u) = vuf(t'm X’rL7 Z’rL; u)
Vug(Tiv Xiv Zia u) = vug(tnv XnyZn, u>,
Using these approximations, only one evaluation of
the partial derivatives is needed in each integra-

tion step. The derivations above apply to each in-
dividual integration steft,, t, + h]. The sensitivi-

i=2,34

4
ent1 = Z hd;£; (20)
i=1

nd

1 (en+1)i )2
- | = _ \Ondl)i 21
" ng Z (atoli + |(zn)i| rtol; 1)
i=1

7

if » < 1then
Accept the step, update the time— ¢ + A, and update the
solution:xp4+1 = X4, z2n41 = Zg.
Compute the sensitivitie$A, B) for the interval[¢, ¢ +
h] using Algorithm 2. Update the sensitivitigs\ , By):
A, — A A, B, — B,A +B.
Compute a new step sizeusing the error controller.

else
Compute a new step sizeusing the error controller.

end if

end while

4. IMPLEMENTATION ISSUES

ties are propagated over successive integration steps

using a simple recursion. 1A, = V, xx+1 and

Bi = V4, %41 denote the state and parameter sensi-

tivity matrices for the intervalt, t;+1], correspond-
ing to a predefined sampling interval, then the sensi-
tivities are updated recursively as

A, ALA B, B,A+B (15

with A = TandB; = 0 att = ¢, assuming that the
initial conditions are independent of the parameters.

The method described has been implemented in the
Fortran code ESDIRK34. The overall structure of the
code is outlined in Algorithm 1. ESDIRK34 uses
a staggered direct approach to sensitivity analysis.
Once the convergence criterion in the Newton iteration
is satisfied, the sensitivities are calculated directly
according to Algorithm 2 exploiting the linearity of
the sensitivity equations. This approach has several
desirable properties:



Algorithm 2 Approximate Sensitivities a factorization is performed in each step, good con-
Solve forv vergence is attained, and no restrictions need to be

My = | Vxf Vxg 22) placed on the step size changes in terms of variations
T | Vaf Vag from step to step, noting that a change in step size
using theL U factorization ofM. calls for a refactorization of the iteration matrix. This
Compute property simplifies the construction of the integration
G, - [fo Vg (Vo)) Vaf 0} (23a) error and convergence co_ntrollgr compare_q t_o a high-
performance implementation without sensitivity capa-
G2 = ([10] +hanG1) V @3 pijities.
Gz = ([T 0] 4+ has1G1 + hazGa) V (23c) o
In terms of error norms, convergence criteria, stage
K =[1 0] + hanGi+hawGz + haGs  23d)  yaue predictors for the Newton iteration etc., ES-
Solve for [Van4 vxnz4] DIRI_<34 uses.standard techniques; the error-norm is
a mixed relative-absolute norm (21), for reasons of
[vxnx4 VanzJ M=K (23e) robustness the convergence is based on the residuals
using theL.U factorization ofVI rather than the displacements (Houl:nilal_., 1985),_
Set and the stage values for the 3rd and 4th internal inte-
A =Vx,Xy (23f) gration stages are efficiently predicted using informa-
Compute tion from the second step (remembering the distribu-

. tion of the quadrature nodes).
Li = [Vuf — Vug (Vag) ' Vaf 0] (24a)

Ly — [haleJrM [Vuf Vug]] Vi [Vuf Vug] 'I_'he integration error is_ controlk_ad using a predic-
(24b) tive controller for step size selection as suggested by
Gustafsson (1992). The local truncation eregy,

Ls = [hasiLi + hasaLa + by [Vuf Vag]]V . ;
3 = [hasiLa + hasaLo o by [Vuf Vug] computed by the error estimator is related to the step

+ [Vuf Vug] (240)  sizeh, by
H = ha41L;1 + hasaLa 4+ haqsLs + hy [Vuf Vug} _ p+1 p+2
(24d) ent1 = @t + O () (29)
in whichp = 3 is the order of ESDIRK34. Asymptot-
Solve for [VuXy VuZa] ically, the normr,,; of the errore,, , ; is given by
[VuXy VuZi] -M=H (24e) Tpt1 = @l (26)
using theLU factorization ofM inwhichy,, = ||¢(t,)+0O (hy)||. Inthe conventional
Set i i i
— (240) asymptotic error controller, the disturbancs,, is

assumed to be constant (or slowly varying). A dead-

beat disturbance estimate may be obtainedhRy=
» Sensitivities are not calculated in steps, where o, | = r, /A"’ Hence, the solution accuraey=
the error control fails, thereby avoiding wasted r,,, is achieved by selecting the step size by the
work. formula
e The same Jacobian evaluation is used for the 1/(p+1) 1/(p+1)
iteration matrix and for the sensitivity algorithm. hy = < 6 ) = <_> hn_1 (27)
e The sameLU factorization of the iteration ma- #n Tn
trix is used in the Newton iteration and in the Based on empirical evidence, Gustafsson (1992) noted
direct solution of the sensitivities. that a better model for the disturbanggis a logarith-

mic linear model, i.e.

From Algorithm 2 it is seen that in each step, the extra
effort of calculating sensitivities is effectively redute Alog pn+1 = Alog (28)

to evaluating Vuf Vug], performing three back sub- - which Alogp, = logg, — logo, 1. Using

:1?12;]tlcoar;fylijr?én?)ltJTeaalr:E;dbyefragiorr;z?rji;t?rzzttlr?: (r)npa;:g(, the disturbance model (28), the process model (26),
. : ) : " and the measurement,_; = r,/h?"!, Gustafsson
tions. As pointed out by Let al. (2000), a drawback Bhot = 7o /Moy

fih ddi hod is th dforf (1992) constructed an observer for the model (28).
ofthe staggered direct method Is the need for frequenty, - nction with a dead-beat predictive controller

factorizations of the iteration matrix. Because the iter- selecting the step size, this observer results in the

ation matrix is used n(_)t only to convgrgeth_e nonlinear following control law for computation of the step size
system of state equations but also directly in the calcu-

lation of sensitivities, ESDIRK34 factorizes the matrix Chay (e /O g, N/ ,
in each step. Most standard DAE solvers (which are ™ — p ., \ T n—l
not prepared for sensitivity analysis) use an adaptive (29)

strategy for choosing when to refactorize. There is k; and ky are the gain parameters of the observer,
always a trade-off between the rate of convergencewhilec¢ is the desired tolerance (including a safety fac-
in the Newton iterations and the frequency of Jaco- tor). Gustafsson (1992) suggests= k, = 1 which

bian updates and factorizations. Since in ESDIRK34 corresponds to a dead-beat observer. This predictive



Table 1. Performance comparison between REFERENCES

ESDIRK34 and sLIMEX. Alexander, R. (2003). Design and implementation of

Code SLIMEX ESDIRK34 DIRK integrators for stiff systemsApplied Nu-
NSTEP 8 77 merical Mathematicg6, 1-17.
NFUN 360 868 Binder, T., L. Blank, H.G. Bock, R. Bulirsch, W. Dah-
NJAC 28 75 men, M. Diehl, T. Kronseder, W. Marquardt,
miﬁCT fgg 77;5' J.P. Schloder and O. von Stryk (2001). Intro-
NBACK 4480 862 duction to model bgsed optlmlzatlonlof chermcal
NSENS 360 77 processes on moving horizons. @nline Opti-
CPU Time (sec) 0.07 0.09 mization of Large Scale SysterfM. Grotschel,
S.0. Krumke and J. Rambau, Eds.). pp. 295-339.
integration error controller, along with a number of Springer. Berlin.

extensions and safety nets has been implemented irCaracotsios, M. and W. E. Stewart (1985). Sensitivity

ESDIRK34. The benefits of model based step size analysis of initial value problems with mixed

controllers for integrators in optimization applications ODEs and algebraic equationSomputers and

have recently been confirmed by Meekeal. (2004). Chemical Engineerin§(4), 359—-365.

Gustafsson, K. (1992). Control of Error and Conver-
gence in ODE Solvers. PhD thesis. Department
5. METHOD COMPARISON of Automatic Control, Lund Institute of Technol-
0gy.

The ESDIRK34 algorithm was tested on the Dow Houbak, N., S. P. Ngrsett and P. G. Thomsen (1985).

Chemicals benchmark problem (Caracotsios and Stew-  Displacement or residual test in the application of

art, 1985; Liet al, 2000) consisting of 6 differential implicit methods for stiff problemdMA Journal

equations and 4 algebraic equations. Sensitivities were ~ of Numerical Analysi§(3), 297-305.

calculated for 9 kinetic rate constants. It was verified Jgrgensen, J. B., J. B. Rawlings and S. B. Jgrgensen

that correct results were obtained. (2004). Numerical solution of uncontrained non-
linear optimal control problems. Manuscript for
Computers and Chemical Engineering.

Kristensen, M. (2004). Parameter estimation in non-
linear dynamical systems. Master’s thesis. De-
partment of Chemical Engineering, Technical
University of Denmark.

Kristensen, M. R., J. B. Jgrgensen, P. G. Thomsen and
S. B. Jgrgensen (2081 An ESDIRK method
with sensitivity analysis capabilitie€omputers
and Chemical Engineering8, 2695-2707.

Kristensen, M.R., J.B. Jgrgensen, P.G. Thomsen
and S.B. Jgrgensen (206)4 Efficient sensitiv-
ity computation for nonlinear model predictive

A performance comparison was made between ES-
DIRK34 and the code sLIMEX (Schleget al., 2004)
which is based on a one-step extrapolation method.
SLIMEX uses a simultaneous corrector method for
sensitivity computation. The results are summarizedin
Table 1 showing comparable performance in terms of
CPU time with more function evaluations required by
ESDIRK34 but significantly less Jacobian evaluations
due to the efficient reuse of Jacobian information for
the sensitivity integration.

6. CONCLUSION control. In:NOLCOS 2004, 6th IFAC Symposium
] o . ) on Nonlinear Control Systen{&rank Allgower,
A new algorithm for sensitivity analysis of index-1 Ed.). IFAC. Stuttgart, Germany. pp. 723-728.

DAEs has been presented. The algorithm is based on j 5. | 'Petzold and W. Zhu (2000). Sensitivity anal-
an ESDIRK method of the Runge-Kutta family, and ysis of differential-algebraic equations: A com-

it ha; been implemented in.the code ESDIRK34. The parison of methods on a special problepplied
algorithm has order 3 and is A- and L-stable as well Numerical Mathematic82 161—174.

as stiffly accurate. The state and sensitivity integra- Meeker, K., C. Homescu, L. Petzold, H. EI-Samad and
tions are performed separately, thereby enabling the M. Khammash (2004). Digital filter stepsize con-
linearity of the sensitivity equations to be exploited. trol in DASPK and its effect on control optimiza-
A key feature of the new algorithm is the reuse of tion performance. Technical report. Department
the Jacobian evaluations for both iteration matrices of Computer Science, University of California,
and sensitivity residuals. In this way the extra effort Santa Barbara, USA.

of calculating sensitivities is minimized. Case studies Schlegel, M., W. Marquardt, R. Ehrig and U. Nowak
have shown that clear advantages exist for the use of (2004). Sensitivity analysis of linearly-implicit
one step methods such as ESDIRK34, when frequent differential-algebraic systems by one-step ex-
discontinuities are present in the solution. This makes trapolation. Applied Numerical Mathematics
ESDIRK34 suitable for use in dynamic optimization 48(1), 83-102.

and nonlinear model predictive control. In addition

ESDIRK has been applied for parameter estimation in

dynamic models (Kristensen, 2004).



