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Abstract: Dynamic optimization by multiple shooting requires integration and sensitivity
calculation. A new semi-implicit Runge-Kutta algorithm for numerical sensitivity calcu-
lation of index-1 DAE systems is presented. The algorithm calculates sensitivities with
respect to problem parameters and initial conditions, exploiting the special structure of
the sensitivity equations. The algorithm is a one-step method which makes it especially
efficient compared to multiple-step methods when frequent discontinuities are present.
These advantages render the new algorithm particularly suitable for dynamic optimization
and nonlinear model predictive control. The algorithm is tested on the Dow Chemicals
benchmark problem.Copyright c©2005 IFAC.
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1. INTRODUCTION

Sensitivity analysis for DAE systems is important
in many engineering and scientific applications. It is
useful in gradient based optimization of systems de-
scribed by differential algebraic equations. Such ap-
plications include parameter estimation (prediction-
error-estimation), dynamic optimization (optimal con-
trol) and experimental design. Furthermore, sensitiv-
ity analysis finds applications within model reduction.
In this paper, we present an algorithm for solution
of index-1 DAE systems and simultaneous computa-
tion of the sensitivities. The algorithm is an extension
of the ESDIRK algorithm (Alexander, 2003; Kris-
tensenet al., 2004a; Kristensenet al., 2004b) and
is motivated by optimal control problems solved us-

1 Corresponding author. E-mail: jbj@2-control.com. Phone:+45
70 222 404

ing multiple shooting (Binderet al., 2001; Jørgensen
et al., 2004). The overall efficiency of the multiple
shooting optimal control algorithm depends critically
on the efficiency of the procedure for integration and
sensitivity calculation as most of the computational
effort is spent in this part of the program.

The algorithm is applicable to index-1 differential
algebraic equations in semi-explicit form

ẋ(t) = f(t,x(t), z(t),u) (1a)

0 = g(t,x(t), z(t),u) (1b)

x(t0) = x0 (1c)

∂g

∂z
is assumed to be non-singular. The solution of

this system is denoted:x(t) = x(t;x0,u) and
z(t) = z(t;x0,u). The state sensitivities,sx,x0

(t) =
∂

∂x0
x(t;x0,u) and sz,x0

(t) = ∂
∂x0

z(t;x0,u), are
given by the linear differential algebraic system



ṡx,x0
=

(
∂f

∂x

)

sx,x0
+

(
∂f

∂z

)

sz,x0
(2a)

0 =

(
∂g

∂x

)

sx,x0 +

(
∂g

∂z

)

sz,x0 (2b)

sx,x0
(0) = I (2c)

Similarly, the parameter sensitivities, denotedsx,u(t) =
∂

∂u
x(t;x0,u) andsz,u(t) = ∂

∂u
z(t;x0,u), are given

by the linear differential algebraic system

ṡx,u =

(
∂f

∂x

)

sx,u +

(
∂f

∂z

)

sz,u +

(
∂f

∂u

)

(3a)

0 =

(
∂g

∂x

)

sx,u +

(
∂g

∂z

)

sz,u +

(
∂g

∂u

)

(3b)

sx,u(0) = 0 (3c)

The method presented is an explicit singly diagonal
Runge-Kutta algorithm which simultaneously solves
(1)-(3) for the state and algebraic trajectories,x(t) and
z(t), as well as the state and parameter sensitivities,
sx,x0

(t) andsx,u(t). The algorithm has been extended
with a predictive step-length controller, and efficiently
reuses the Jacobian used in solving (1) for solution of
the sensitivity equations, (2)-(3). In contrast to BDF
methods, which are multi-step methods, the ESDIRK
method is a one-step method which implies that it
is efficient for problems with frequent discontinu-
ities; e.g. zero-order-hold parameterized optimal con-
trol problems.

2. OPTIMAL CONTROL BY MULTIPLE
SHOOTING

As a motivating application for sensitivity computa-
tions for differential algebraic equations, consider the
optimal Bolza problem

min
{x(t),u(t)}

φ =

∫ tf

t0

h(t,x(t), z(t),u(t))dt + L(x(tf ))

(4a)

s.t. ẋ(t) = f(t,x(t), z(t),u(t)) (4b)

0 = g(t,x(t), z(t),u(t)) (4c)

x(t0) = x0 (4d)

in which the controls are discretized using zero-order-
hold

u(t) = uk tk ≤ t < tk+1, k = 0, 1, . . . , N−1 (5)

The corresponding discrete-time problem which can
be solved by SQP techniques is

min φ =

N−1∑

k=0

Hk(xk,uk) + L(xN ) (6a)

s.t. xk+1 = Fk(xk,uk) (6b)

The operator,Fk(xk,uk) = x(tk+1), is computed as
the solution of an index-1 DAE system

ẋ(t) = f(t,x(t), z(t),uk) (7a)

0 = g(t,x(t), z(t),uk) (7b)

x(tk) = xk (7c)

and the operator

Hk(xk,uk) =

∫ tk+1

tk

h(t,x(t), z(t),u)dt (8)

is computed by quadrature along the solution of the
index-1 DAE system. Alternatively, it may be com-
puted by augmenting the DAE system by an extra
state, i.e.ẏ = h(t,x(t), z(t),u) andy(tk) = 0. In
addition to evaluation ofHk(xk,uk) andFk(xk,uk),
the solution of (6) by SQP methods require evaluation
of the gradients ofFk(xk,uk)

Ak = ∇xk
Fk(xk,uk) (9a)

Bk = ∇uk
Fk(xk,uk) (9b)

as well as the gradients ofHk(xk,uk)

qk = ∇xk
Hk(xk,uk) (10a)

rk = ∇uk
Hk(xk,uk) (10b)

The gradients,Ak andBk, are computed as the state
and parameter sensitivities of the index-1 DAE system
(7), i.e.Ak = sx,x0

(tk+1)
T andBk = sx,u(tk+1)

T .
qk andrk may be computed in a similar manner. This
motivates the need for efficient solution of index-1
DAE systems and their sensitivities in optimal control
including nonlinear model predictive control.

3. THE ESDIRK METHOD FOR DAE SYSTEMS

The algorithm presented here for joint state and sen-
sitivity integration is based on an ESDIRK method
(Kristensenet al., 2004a; Alexander, 2003). The algo-
rithm has been implemented in the code ESDIRK34
which treats index-1 DAE systems of the form (1).
The ESDIRK integration scheme for the differential
equations is

Xi = xn + h
i∑

j=1

aijf(tn + cjh,Xj ,Zj ,u)

xn+1 = xn + h
4∑

i=1

bif(tn + cih,Xi,Zi,u)

en+1 = h

4∑

i=1

dif(tn + cih,Xi,Zi,u)

(11)

in which Xi denotes the solution at theith internal
stage(i = 1, 2, 3, 4) of stepn ande is the error vector.
Zj must satisfy the algebraic equations

0 = g(tn + cjh,Xj ,Zj ,u), j = 1, 2, 3, 4 (12)

The coefficients in (11) are presented in the Butcher
tableau

0 0
c2 a21 γ
c3 a31 a32 γ
1 b1 b2 b3 γ

xn+1 b1 b2 b3 γ
en+1 d1 d2 d3 d4

=

c A

bT

dT
(13)



According to the tableau the solution to the first inter-
nal stage is explicitly given as the solution to the last
stage of the previous step. Solution of the nonlinear
equations in (11) requires an iterative procedure in
which the equations (12) are solved simultaneously.
Following the integration scheme the full set of equa-
tions for theith internal stage is

[
Xi

0

]

=

[
xn

0

]

+ h

i∑

j=1

aij ·

[
f(Tj ,Xj ,Zj ,u)
g(Tj,Xj ,Zj ,u)

]

=

[
xn

0

]

+ h

i−1∑

j=1

aij ·

[
f(Tj ,Xj ,Zj ,u)

0

]

+ hγ ·

[
f(Ti,Xi,Zi,u)
g(Ti,Xi,Zi,u)

]

in whichTi = tn + cih. In residual form this becomes

R(Xi,Zi) =
[
Xi

0

]

−

[
xn

0

]

− h

i−1∑

j=1

aij ·

[
f(Tj ,Xj ,Zj ,u)

0

]

− hγ ·

[
f(Ti,Xi,Zi,u)
g(Ti,Xi,Zi,u)

]

= 0

The residual is equated to zero and solved via Newton
iterations

∇R(X
(k)
i ,Z

(k)
i )T ·

[
∆Xi

∆Zi

]

= −R(X
(k)
i ,Z

(k)
i )

[

X
(k+1)
i

Z
(k+1)
i

]

=

[

X
(k)
i

Z
(k)
i

]

+

[
∆Xi

∆Zi

]

in which the gradient ofR is

∇R(Xi,Zi)

=

[

I− hγ∇xf(Ti, Xi, Zi,u) −hγ∇xg(Ti,Xi,Zi, u)
−hγ∇zf(Ti,Xi,Zi,u) −hγ∇zg(Ti,Xi,Zi,u)

]

'

[

I− hγ∇xf(tn,xn, zn,u) −hγ∇xg(tn, xn, zn, u)
−hγ∇zf(tn, xn, zn,u) −hγ∇zg(tn,xn, zn, u)

]

= M

in which M denotes the iteration matrix. This matrix
is formed from the Jacobian of the DAE system (1):

J =

[
∇xf ∇zf

∇xg ∇zg

]

The solutions to the second, third and fourth internal
stages are calculated in the above fashion. Since the
solution to stage four equals the solution at the end
point, no further calculations are needed and

[
X4

Z4

]

=

[
xn+1

zn+1

]

(14)

Each Newton iteration requires starting guesses for
all variables. Extrapolated values based on previous
information is used as starting guesses for the alge-
braic variables. The distribution of nodes within each
integration step is illustrated below:

tn tn + c2htn + c3h tn+1

For stage 2 the solution attn is used as starting
guess, i.e.Z(1)

2 = zn. Experiments has been made
using an extrapolated value based on information from
the previous integration step, but without convincing
results. For stage 3 interpolation is made usingzn

andZ2, and the starting guess for stage 4 is based on
extrapolation fromZ2 andZ3.

3.1 Sensitivities

ESDIRK34 uses a staggered direct approachto sen-
sitivity analysis (Caracotsios and Stewart, 1985). In
the staggered direct approach the state and sensitivity
integration is performed in a staggered fashion within
each integration step. First, the model states of the
DAE system are integrated fromtn to tn+1 after which
the linear sensitivity equations are solved directly us-
ing the current factorization of the iteration matrix.

3.1.1. State Sensitivities The state sensitivities are
derived by differentiation of the discrete formula (11)
with respect to the initial states. If we let the algebraic
states follow the integration scheme, theith stage
gradient (i = 2, 3, 4) is calculated as follows for one
integration step

∇xn

[
Xi

0

]

=∇xn

[
xn

0

]

+

h
i∑

j=1

aij∇xn

[
f(Tj ,Xj ,Zj ,u)
g(Tj ,Xj ,Zj ,u)

]

which yields
[
∇xn

Xi 0
]

=
[
I 0

]

+ hai1

[
∇xn

xn ∇xn
zn

]
·

[
∇xf ∇xg

∇zf ∇zg

]

+ h

i−1∑

j=2

aij

[
∇xn

Xj ∇xn
Zj

]
·

[
∇xf ∇xg

∇zf ∇zg

]

+ hγ
[
∇xn

Xi ∇xn
Zi

]
·

[
∇xf ∇xg

∇zf ∇zg

]

The last term is moved to the left hand side, and the
result is

[
∇xn

Xi ∇xn
Zi

]
·

' M
︷ ︸︸ ︷
[[

I 0

0 0

]

− hγ

[
∇xf ∇xg

∇zf ∇zg

]]

=
[
I 0

]
+ hai1

[
I ∇xn

zn

]
[
∇xf ∇xg

∇zf ∇zg

]

+ h

i−1∑

j=2

aij

[
∇xn

Xj ∇xn
Zj

]
·

[
∇xf ∇xg

∇zf ∇zg

]

The derivatives off andg with respect toXi andZi

are approximated by the derivatives attn, i.e.:
[
∇xf(Ti,Xi,Zi,u) ∇xg(Ti,Xi,Zi,u)
∇zf(Ti,Xi,Zi,u) ∇zg(Ti,Xi,Zi,u)

]

'

[
∇xf(tn,xn, zn,u) ∇xg(tn,xn, zn,u)
∇zf(tn,xn, zn,u) ∇zg(tn,xn, zn,u)

]



for i = 2, 3, 4. SinceX4 = xn+1 andZ4 = zn+1, the
stage gradients∇xn

X4 and∇xn
Z4 equals the desired

state sensitivities.

3.1.2. Parameter SensitivitiesThe parameter sensi-
tivities are derived in a similar fashion. By differentia-
tion of (11) with respect to the parameter vectoru the
ith stage gradient is

∇u

[
Xi

0

]

=∇u

[
xn

0

]

+

h

i∑

j=1

aij∇u

[
f(Tj ,Xj ,Zj ,u)
g(Tj,Xj ,Zj ,u)

]

which may be expressed as
[
∇uXi 0

]
=

hai1

[
[
∇uxn ∇uzn

]
·

[
∇xf ∇xg

∇zf ∇zg

]

+
[
∇uf ∇ug

]
]

+ h

i−1∑

j=2

aij

[
[
∇uXj ∇uZj

]
·

[
∇xf ∇xg

∇zf ∇zg

]

+
[
∇uf ∇ug

]
]

+ hγ

[
[
∇uXi ∇uZi

]
·

[
∇xf ∇xg

∇zf ∇zg

]

+
[
∇uf ∇ug

]
]

The last term containing∇uXi and∇uZi is moved to
the left hand side, and the result is

[
∇uXi ∇uZi

]
·

' M
︷ ︸︸ ︷
[[

I 0

0 0

]

− hγ

[
∇xf ∇xg

∇zf ∇zg

]]

=

hai1

[
[
0 ∇uzn

]
·

[
∇xf ∇xg

∇zf ∇zg

]

+
[
∇uf ∇ug

]
]

+

h

i−1∑

j=2

aij

[
[
∇uXj ∇uZj

]
·

[
∇xf ∇xg

∇zf ∇zg

]

+

[
∇uf ∇ug

]
]

+ hγ
[
∇uf ∇ug

]

The stage gradients∇uX4 and∇uZ4 equal the de-
sired parameter sensitivities. Again, the derivatives of
f andg with respect toXi andZi are approximated
by the derivatives attn, and a similar approximation is
made for the derivatives with respect tou:

∇uf(Ti,Xi,Zi,u) ' ∇uf(tn,xn, zn,u)

∇ug(Ti,Xi,Zi,u) ' ∇ug(tn,xn, zn,u)
, i = 2, 3, 4

Using these approximations, only one evaluation of
the partial derivatives is needed in each integra-
tion step. The derivations above apply to each in-
dividual integration step[tn, tn + h]. The sensitivi-
ties are propagated over successive integration steps
using a simple recursion. IfAk = ∇xk

xk+1 and
Bk = ∇uk

xk+1 denote the state and parameter sensi-
tivity matrices for the interval[tk, tk+1], correspond-
ing to a predefined sampling interval, then the sensi-
tivities are updated recursively as

Ak ← AkA Bk ← BkA + B (15)

with Ak = I andBk = 0 at t = tk, assuming that the
initial conditions are independent of the parameters.

Algorithm 1 ESDIRK34 (DAE) with Sensitivities
t = tk , Ak = I, andBk = 0.
while t ≤ tk + Ts do

If t + h > tk + Ts then h = tk + Ts − t end if.
Compute the Jacobian and the partial derivatives with respect
to parameters
Compute iteration matrix

M =
[

I− hγ∇xf(tn, xn, zn,u) −hγ∇xg(tn,xn, zn, u)
−hγ∇zf(tn, xn, zn, u) −hγ∇zg(tn,xn, zn,u)

]

(16)

andLU -factorizeM.
Compute the internal stages iteratively fori = 2, 3, 4 using the
LU -factorization ofM.
while tol ≤ ‖R‖ do

Compute the residual vectorR and solve for

[

∆Xi

∆Zi

]

R(Xi, Zi) =

[

Xi

0

]

−

[

xn

0

]

− h

i∑

j=1

aij ·

[

f(Tj ,Xj ,Zj ,u)
g(Tj , Xj ,Zj ,u)

]

(17)

MT ·

[

∆Xi

∆Zi

]

= −R(X
(k)
i

,Z
(k)
i

) (18)

[

X
(k+1)
i

Z
(k+1)
i

]

=

[

X
(k)
i

Z
(k)
i

]

+

[

∆Xi

∆Zi

]

(19)

end while
Compute the error estimateen+1 and tolerance monitorr:

en+1 =

4∑

j=1

hdj fj (20)

r =

√
√
√
√ 1

nd

nd∑

i=1

(
(en+1)i

atoli + |(xn)i| rtoli

)2

(21)

if r ≤ 1 then
Accept the step, update the timet ← t + h, and update the
solution:xn+1 = X4, zn+1 = Z4.
Compute the sensitivities(A, B) for the interval [t, t +
h] using Algorithm 2. Update the sensitivities(Ak ,Bk):
Ak ← AkA, Bk ← BkA + B.
Compute a new step sizeh using the error controller.

else
Compute a new step sizeh using the error controller.

end if
end while

4. IMPLEMENTATION ISSUES

The method described has been implemented in the
Fortran code ESDIRK34. The overall structure of the
code is outlined in Algorithm 1. ESDIRK34 uses
a staggered direct approach to sensitivity analysis.
Once the convergencecriterion in the Newton iteration
is satisfied, the sensitivities are calculated directly
according to Algorithm 2 exploiting the linearity of
the sensitivity equations. This approach has several
desirable properties:



Algorithm 2 Approximate Sensitivities
Solve forV

MV =

[

∇xf ∇xg

∇zf ∇zg

]

(22)

using theLU factorization ofM.
Compute

G1 =
[
∇xf −∇xg (∇zg)−1∇zf 0

]
(23a)

G2 =
([

I 0
]

+ ha21G1

)
V (23b)

G3 =
([

I 0
]

+ ha31G1 + ha32G2

)
V (23c)

K =
[
I 0

]
+ ha41G1 + ha42G2 + ha43G3 (23d)

Solve for
[
∇xnX4 ∇xnZ4

]

[
∇xnX4 ∇xnZ4

]
·M = K (23e)

using theLU factorization ofM
Set

A = ∇xnX4 (23f)

Compute

L1 =
[
∇uf −∇ug (∇zg)−1∇zf 0

]
(24a)

L2 =
[
ha21L1 + hγ

[
∇uf ∇ug

]]
V +

[
∇uf ∇ug

]

(24b)

L3 =
[
ha31L1 + ha32L2 + hγ

[
∇uf ∇ug

]]
V

+
[
∇uf ∇ug

]
(24c)

H = ha41L1 + ha42L2 + ha43L3 + hγ
[
∇uf ∇ug

]

(24d)

Solve for
[
∇uX4 ∇uZ4

]

[
∇uX4 ∇uZ4

]
·M = H (24e)

using theLU factorization ofM
Set

B = ∇uX4 (24f)

• Sensitivities are not calculated in steps, where
the error control fails, thereby avoiding wasted
work.
• The same Jacobian evaluation is used for the

iteration matrix and for the sensitivity algorithm.
• The sameLU factorization of the iteration ma-

trix is used in the Newton iteration and in the
direct solution of the sensitivities.

From Algorithm 2 it is seen that in each step, the extra
effort of calculating sensitivities is effectively reduced
to evaluating

[
∇uf ∇ug

]
, performing three back sub-

stitutions using the already factorized iteration matrix,
and carrying out a number of matrix-matrix opera-
tions. As pointed out by Liet al. (2000), a drawback
of the staggered direct method is the need for frequent
factorizations of the iteration matrix. Because the iter-
ation matrix is used not only to converge the nonlinear
system of state equations but also directly in the calcu-
lation of sensitivities, ESDIRK34 factorizes the matrix
in each step. Most standard DAE solvers (which are
not prepared for sensitivity analysis) use an adaptive
strategy for choosing when to refactorize. There is
always a trade-off between the rate of convergence
in the Newton iterations and the frequency of Jaco-
bian updates and factorizations. Since in ESDIRK34

a factorization is performed in each step, good con-
vergence is attained, and no restrictions need to be
placed on the step size changes in terms of variations
from step to step, noting that a change in step size
calls for a refactorization of the iteration matrix. This
property simplifies the construction of the integration
error and convergence controller compared to a high-
performance implementation without sensitivity capa-
bilities.

In terms of error norms, convergence criteria, stage
value predictors for the Newton iteration etc., ES-
DIRK34 uses standard techniques; the error-norm is
a mixed relative-absolute norm (21), for reasons of
robustness the convergence is based on the residuals
rather than the displacements (Houbaket al., 1985),
and the stage values for the 3rd and 4th internal inte-
gration stages are efficiently predicted using informa-
tion from the second step (remembering the distribu-
tion of the quadrature nodes).

The integration error is controlled using a predic-
tive controller for step size selection as suggested by
Gustafsson (1992). The local truncation erroren+1

computed by the error estimator is related to the step
sizehn by

en+1 = φ(tn)hp+1
n +O

(
hp+2

n

)
(25)

in whichp = 3 is the order of ESDIRK34. Asymptot-
ically, the normrn+1 of the erroren+1 is given by

rn+1 = ϕnhp+1
n (26)

in whichϕn = ||φ(tn)+O (hn) ||. In the conventional
asymptotic error controller, the disturbance,ϕn, is
assumed to be constant (or slowly varying). A dead-
beat disturbance estimate may be obtained byϕ̂n =
ϕn−1 = rn/hp+1

n−1. Hence, the solution accuracyε =
rn+1 is achieved by selecting the step size by the
formula

hn =

(
ε

ϕ̂n

)1/(p+1)

=

(
ε

rn

)1/(p+1)

hn−1 (27)

Based on empirical evidence, Gustafsson (1992) noted
that a better model for the disturbanceϕn is a logarith-
mic linear model, i.e.

∆log ϕn+1 = ∆ log ϕn (28)

in which ∆log ϕn = log ϕn − log ϕn−1. Using
the disturbance model (28), the process model (26),
and the measurementϕn−1 = rn/hp+1

n−1, Gustafsson
(1992) constructed an observer for the model (28).
In conjunction with a dead-beat predictive controller
selecting the step size, this observer results in the
following control law for computation of the step size

hn =
hn−1

hn−2

(
ε

rn

)k2/(p+1) (
rn−1

rn

)k1/(p+1)

hn−1

(29)
k1 and k2 are the gain parameters of the observer,
while ε is the desired tolerance (including a safety fac-
tor). Gustafsson (1992) suggestsk1 = k2 = 1 which
corresponds to a dead-beat observer. This predictive



Table 1. Performance comparison between
ESDIRK34 and sLIMEX.

Code sLIMEX ESDIRK34

NSTEP 28 77
NFUN 360 868
NJAC 28 75
NJACT 388 75
NLU 166 77
NBACK 4482 862
NSENS 360 77
CPU Time (sec) 0.07 0.09

integration error controller, along with a number of
extensions and safety nets has been implemented in
ESDIRK34. The benefits of model based step size
controllers for integrators in optimization applications
have recently been confirmed by Meekeret al.(2004).

5. METHOD COMPARISON

The ESDIRK34 algorithm was tested on the Dow
Chemicals benchmark problem (Caracotsios and Stew-
art, 1985; Liet al., 2000) consisting of 6 differential
equations and 4 algebraic equations. Sensitivities were
calculated for 9 kinetic rate constants. It was verified
that correct results were obtained.

A performance comparison was made between ES-
DIRK34 and the code sLIMEX (Schlegelet al., 2004)
which is based on a one-step extrapolation method.
sLIMEX uses a simultaneous corrector method for
sensitivity computation. The results are summarized in
Table 1 showing comparable performance in terms of
CPU time with more function evaluations required by
ESDIRK34 but significantly less Jacobian evaluations
due to the efficient reuse of Jacobian information for
the sensitivity integration.

6. CONCLUSION

A new algorithm for sensitivity analysis of index-1
DAEs has been presented. The algorithm is based on
an ESDIRK method of the Runge-Kutta family, and
it has been implemented in the code ESDIRK34. The
algorithm has order 3 and is A- and L-stable as well
as stiffly accurate. The state and sensitivity integra-
tions are performed separately, thereby enabling the
linearity of the sensitivity equations to be exploited.
A key feature of the new algorithm is the reuse of
the Jacobian evaluations for both iteration matrices
and sensitivity residuals. In this way the extra effort
of calculating sensitivities is minimized. Case studies
have shown that clear advantages exist for the use of
one step methods such as ESDIRK34, when frequent
discontinuities are present in the solution. This makes
ESDIRK34 suitable for use in dynamic optimization
and nonlinear model predictive control. In addition
ESDIRK has been applied for parameter estimation in
dynamic models (Kristensen, 2004).
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