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Abstract: This paper presents an algorithm for the design of robust model-

based predictive controller for hybrid system under uncertainty via parametric

programming. A min-max approach is adopted to design robust hybrid para-

metric predictive controller (RHPPC) where a cost function is minimized for

the maximum violation of the uncertainty involved. The proposed hybrid control

scheme guarantees stability and feasible operation in the presence of bounded

input uncertainty. The governing piecewise affine optimal control policy as a

function of states can then be administered on-line as a sequence of simple function

evaluations. An example is presented to illustrate the details of the proposed

RHPPC design. Copyright c©2005 IFAC
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1. INTRODUCTION

Hybrid systems are systems involving interactive

combination of logic, dynamics and constraints,

(Grossman et al., 1993), (Antsaklis, 2000), also

called mixed logical dynamical (MLD) systems,

(Bemporad and Morari, 1999). Many practical

engineering applications are inherently hybrid in

nature. Modelling, optimization and control of

hybrid systems is one of the most active areas

of research in control and systems engineering.

The presence of uncertainty due to inevitable

parameter variations and exogenous disturbances

may severely affect the performance of a hy-

brid system, potentially leading to infeasibility.
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Therefore the key control objective is to achieve

robust stability and robust performance using

the optimal switching among the family of state

and input models, while guaranteeing economics

and operational safety. However, the issue of ro-

bust controller design for hybrid systems under

uncertainty has not been fully addressed in the

open literature. Mayne and Raković, (Mayne and

Raković, 2003) have proposed first on-line MPC

algorithm for hybrid systems by exploiting the

special problem structure.

In the current work, the mixed integer parametric

programming principles are applied to design ex-

plicit MPC under the influence of uncertainty to

achieve robust performance. A min-max control

formulation is proposed to derive the explicit

control policy to safeguard against worst-case un-



certainty scenario, thus guaranteeing feasibility

as well as stability.

The paper is outlined as follows. Section 2

presents the problem formulation of the robust

hybrid control. Section 3 describes the theoret-

ical tools used to achieve robust feasibility and

stability. In section 4, a min-max problem is pro-

posed for both the open-loop and the closed-loop

cases. Finally section 5 presents a design exam-

ple to illustrate the implementation procedure of

the proposed robust hybrid parametric predictive

controller (RHPPC).

2. HYBRID SYSTEM MODEL

2.1 System Representation

Consider the following discrete dynamical system

in the form of multi-model state space system

(Bemporad and Morari, 1999), (Sakizlis et al.,

2002).

x(k + 1) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
A1x(k) +B1u(k) +Gw(k)

if S1x(k) + T1u(k) ≤ E1

A2x(k) +B2u(k) +Gw(k)

if S2x(k) + T2u(k) ≤ E2

...

Asx(k) +Bsu(k) +Gw(k)

if Ssx(k) + Tsu(k) ≤ Es

(1)

where x(k) ∈ ℜn are states, u(k) ∈ ℜm are

control input, and w(k) ∈ ℜl are disturbance

variables with x(0) = x0 and corresponding

system matrices Ai ∈ ℜn×n, Bi ∈ ℜn×m, G ∈

ℜn×l; ∀i = 1, . . . , s. Furthermore we enforce

x(k), u(k) and w(k) to be enclosed inside the

bounded polyhedral sets i.e., ∀k ≥ 0, x(k) ∈ X ,

u(k) ∈ U , and w(k) ∈ W representing operating

limitations. Constraint matrices Si, Ti and Ei

defines the convex polyhedra in the state+input

space.

2.2 Reformulation to Mixed-Integer Form

Consider a binary variables δi(k) ∈ {0, 1} cor-

responding to each of the ith system dynamics,

which implies whether that system is active or

not by assigning the appropriate switching se-

quence. Now, by defining the nonlinear terms

zi(k) , [Aix(k) +Biu(k)] δi(k) system (1) can be

reformulated as (Bemporad and Morari, 1999),

(Sakizlis, 2003),

x(k + 1) =

s
∑

i=1

zi(k) +Gw(k) (2)

zi(k)≤Mδi(k)

zi(k)≥mδi(k)

zi(k)≤Aix(k) +Biu(k) −m (1 − δi(k))

zi(k)≥Aix(k) +Biu(k) −M (1 − δi(k))

Ei ≥ Six(k) + Tiu(k) −M∗

i (1 − δi(k))

where
s

∑

i=1

δi(k) = 1, while M and M∗

i
are

appropriately dimensioned large numbers with

m = −M .

2.3 Problem Formulation

The finite-horizon predictive control problem for

the hybrid system is given by,

Φp(x(0)) = min
u(k)

(
N−1X
k=0

‖Qx(k)‖p + ‖Ru(k)‖p

)
+ ‖Px(N)‖

p
(3)

s.t. x(k + 1) = Aix(k) +Biu(k) +Gw(k)

x(k) ∈ X , u(k) ∈ U , w(k) ∈ W,

x(N) ∈ O∞ ⊆ X , if mi ≤ x(k) ≤Mi;

∀k = 0, 1, . . . , (N − 1); ∀i = 1 ∨ 2 ∨ . . . ∨ s

where Q � 0 and R ≻ 0 are the weighting matri-

ces for state and control while positive definite P

is the stabilizing terminal cost for the prediction

horizon N . The objective is defined over p = 1, 2

or ∞ based on l1, l2 or l∞ performance criterion

and ∨ is disjunction denoting logical “or” for

i = 1, . . . , s systems.

Furthermore after the N th time step we enforce

the states to lie in the positive invariant set,

(Kolmanovsky and Gilbert, 1998), (Blanchini,

1999), containing the origin in its interior by

defining the positive invariant set O∞ ⊆ X :

O∞ ≡

{

x ∈ ℜn, u ∈ ℜm | Kx ∈ U ,

(Ai +BiK)x+Gw ∈ X ; ∀w ∈ W

}

(4)

where K is the optimal feedback gain.

Rewriting the system (2) in terms of constraint

sets X and U and substituting x(k) into the

objective function of equation (3), the problem



(3) can be reformulated as following multipara-

metric mixed integer quadratic program, (Dua

and Pistikopoulos, 2000).

Γ(X) = min
U,V,Z,D

EW∈WN [Φ(U, V, Z,D,X,W )] (5)

s.t. g(zi(k), vi(k), w(k), δi(k), u(k), X) ≤ 0
sX

i=1

δi(k) = 1

vi(k) ∈ U , w(k) ∈ W, zi(0) ∈ X ,

U ∈ UN
, zi(k) ∈ X , zi(N) ∈ O∞

δi(k) ∈ {0, 1}; ∀i = 1 ∨ 2 ∨ . . . ∨ s

where the column vector V , Z, D defined as

V ,

24 [v1(0), . . . , vs(0)]
T
, . . . ,

[v1(N − 1), . . . , vs(N − 1)]T

35 ;

Z ,

24 [z1(1), . . . , zs(1)]
T
, . . . ,

[z1(N − 1), . . . , zs(N − 1)]T

35 ;

D ,

24 [δ1(0), . . . , δs(0)]
T
, . . . ,

[δ1(N − 1), . . . , δs(N − 1)]T

35
are the optimization vectors, the column vector

W defined as

W ,

24 [w1(0), . . . , ws(0)]
T
, . . . ,

[w1(N − 1), . . . , ws(N − 1)]T

35
is the expected disturbance vector, U is a vector

of control sequence, U , [u(0)T , . . . , u(N−1)T ]T ;

and X , [z1(0)T , . . . , zs(0)T ]T are the current

states treated as parameters.

3. THEORETICAL DEVELOPMENTS

3.1 Stability and Terminal Cost for l2 Criterion

Definition 1. Assuming pairs (Ai, Bi) are both

stabilizable and detectable, system (Ai, Bi) is

asymptotically stable if there exists quadratic

Lyapunov function given by S(ξ) = ξTPξ > 0.

Using above definition we find the positive defi-

nite P from the following theorem.

Theorem 1. (Lyapunov Stability). According to

Lyapunov stability theorem, an open-loop system

is stable if and only if ∀i = 1, . . . , s; ∃ P = PT ≻

0 such that

A
T
i PAi − P < 0 (6)

and closed-loop system pairs (Ai, Bi) are stable

if and only if ∀i = 1, . . . , s; ∃ P = PT ≻ 0 such

that

(Ai +BiK)T
P (Ai +BiK) − P < 0. (7)

With X = P−1 and Y = KX equation (7) is

converted into following set of LMIs, (for proof

see, (Boyd et al., 1994)).24 X (AiX +BiY )T

(AiX +BiY ) X

35≻ 0. (8)

Equations (6) and (8) are both LMIs. After N th,

time step the control law u(k) = Kx(k), with

control gain K = Y X−1 is implemented.

3.2 Feasibility

Definition 2. The robust polytopic parametric

predictive controller steers the plant into the

feasible operating region for a specific range of

uncertain variations, ∀k ≥ 0, ∀w ∈ W .

According to the flexibility analysis theory of

(Pistikopoulos and Grossmann, 1988), maximum

constraint violation define the feasible operating

region. This feasible region is depicted by the

feasibility constraints, ψ(U, V, Z,D,X) ≤ 0 and

is given by,

ψ(U,V, Z,D,X) ≤ 0 ⇔

max
W,j

8>>>>>>><>>>>>>>: gj (U, V, Z,D,X,W )

V ∈ UNs
, Z ∈ X (N−1)s

,

U ∈ UN
, W ∈ WN

,

D ∈ {0, 1}Ns; ∀j = 1, . . . , J

9>>>>>>>=>>>>>>>; . (9)

Equation (9) can be solved by identifying critical

uncertainty points of each maximization ∀j =

1, . . . , J and ∀k = 0, . . . , (N − 1) as,

if
∂gj

∂w(k)
> 0 ⇒ w(k)cr = w(k)ub (10)

if
∂gj

∂w(k)
< 0 ⇒ w(k)cr = w(k)lb (11)

Thus, by substituting the sequence of critical

uncertainty, w(k)cr in the constraints set g(.),



a multi-parametric linear program (mpLP) is

formulated as,

ψ(U,V, Z,D,X)

= max
j
gj (U, V, Z,D,X,W cr)

= min
ε

8>>>>>>><>>>>>>>: ε ≥ gj (V,Z,D,X,W cr)

V ∈ UNs
, Z ∈ X (N−1)s

,

U ∈ UN
, W ∈ WN

,

D ∈ {0, 1}Ns
, ∀j = 1, . . . , J

9>>>>>>>=>>>>>>>; . (12)

Equation (12) can then be solved using the

formal comparison procedure of Acevedo and Pis-

tikopoulos, (Acevedo and Pistikopoulos, 1997).

4. DESIGN OF RHPPC

4.1 Open-Loop RHPPC

The feasibility constraints (9) from section 3.2 are

incorporated in problem (5) to obtain the follow-

ing open-loop robust predictive control problem,

Γol(X) = min
U,V,Z,D

EW∈WN [Φ(U, V, Z,D,X,W )] (13)

s.t. g(zi(k), vi(k), w(k), δi(k), u(k),X) ≤ 0

sX
i=1

δi(k) = 1

vi(k) ∈ U , w(k) ∈ W, zi(0) ∈ X ,

zi(k) ∈ X , zi(N) ∈ O∞

δi(k) ∈ {0, 1}; ∀i = 1 ∨ 2 ∨ . . . ∨ s

max
W,j

8<: gj (U, V, Z,D,X,W )

W ∈ WN ; ∀j = 1, . . . , J

9=; .

This open-loop robust predictive control prob-

lem is a bi-level optimization problem. Note that

the inner minimization problem is equivalent to

equation (12), which can be solved separately re-

sulting into a set of linear feasibility constraints,

ψ(U, V, Z,D,X) ≤ 0. Substituting it into equa-

tion (13) results in the following single-level op-

timization problem:

Γol(X) = min
U,V,Z,D

EW∈WN [Φ(V, Z,D,X,W )] (14)

s.t. g(zi(k), vi(k), w(k), δi(k), u(k), X) ≤ 0

ψ(U, V, Z,D,X) ≤ 0

sX
i=1

δi(k) = 1

vi(k) ∈ U , w(k) ∈ W, zi(0) ∈ X ,

zi(k) ∈ X , zi(N) ∈ O∞

δi(k) ∈ {0, 1}; ∀i = 1 ∨ 2 ∨ . . . ∨ s.

4.2 Closed-Loop RHPPC

As discussed in Sakizlis et al., (Sakizlis et al.,

2004), the drawback of open-loop is that it

does not take into account the future measure-

ments which contain the information of past un-

certainty. The closed-loop problem which pre-

serves feasibility for all uncertainty realizations

is achieved by finding feasibility constraints at

every time step is given as follows.

Γcl(X) = min
U,V,Z,D

EW∈WN [Φ(U, V, Z,D,X,W )] (15)

s.t. g(zi(k), vi(k), w(k), δi(k), u(k), X) ≤ 0

sX
i=1

δi(k) = 1

vi(k) ∈ U , w(k) ∈ W, zi(0) ∈ X ,

zi(k) ∈ X , zi(N) ∈ O∞

δi(k) ∈ {0, 1}; ∀i = 1 ∨ 2 ∨ . . . ∨ s

max
w(0)

min
u(1)

, . . . , max
w(N−2)

min
u(N )

max
w(N−1),j

�
g(.)

�
max
w(1)

min
u(2)

, . . . , max
w(N−2)

min
u(N )

max
w(N−1),j

�
g(.)

�
...

max
w(N−1),j

�
g(.)

�
where g(.) is defined in equation (9).

Equation (15) is multi-level program which can

be solved separately similar to the open-loop

solution procedure. Thus for each time step the

inner max problem is solved backwards in time

for the entire horizon N . The resulting flexibility

constraints are then incorporated into problem

(15) giving rise to single-level program similar to

the open-loop case,



Γcl(X) = min
U,V,Z,D

EW∈WN [Φ(V, Z,D,X,W )] (16)

s.t. g(zi(k), vi(k), w(k), δi(k), u(k),X) ≤ 0

sX
i=1

δi(k) = 1

vi(k) ∈ U , w(k) ∈ W, zi(0) ∈ X ,

zi(k) ∈ X , zi(N) ∈ O∞

δi(k) ∈ {0, 1}; ∀i = 1 ∨ 2 ∨ . . . ∨ s

ψw(0) (V,X, Z,D, u(0)) ≤ 0

ψw(0)

0� V,X, Z,D, w(0),h
u(0)T

, u(1)T
i 1A ≤ 0

...

ψw(0)

0BBBB� V,X, Z,D,h
w(0)T

, . . . , w(N − 2)T
i
,h

u(0)T
, . . . , u(N − 1)T

i 1CCCCA ≤ 0.

Remark 3. The solution obtained in sections 4.1

and 4.2 both are obtained as a piecewise affine

optimal robust parametric predictive control pol-

icy as a function of states V (X) for the critical

polyhedral regions in which plant operation is

stable and feasible ∀w(k) ∈ W .

5. DESIGN EXAMPLE

Example 1: Consider the following dynamical

system, (Bemporad and Morari, 1999).

x(k + 1) = 0.8

[

cos α(t) −sin α(t)

sin α(t) cos α(t)

]

x(k)

+

[

0

1

]

u(k) +

[

0

1

]

w(k);

α(t) =

{

π/3 if [1 0]x(t) ≥ 0

−π/3 if [1 0]x(t) < 0

x(t) ∈ [−10, 10]× [−10, 10]

u(t) ∈ [−1, 1] ; w(t) ∈ [−0.5, 0.5].

Theorem 1 gives stabilizing P =

[

1.4346 0.2684

0.2684 1.0139

]

and control gain is K = [−0.2241 − 0.9253].

For l∞ performance criterion, Fig. 1 depicts

the nominal control policy without disturbances

while Fig. 2 depicts the open-loop robust control

policy in presence of additive disturbances. Fig.

3 gives the open-loop robust control simulation

results with starting condition as [−8 8]. The

model switching for the open-loop robust para-

metric control is shown in Fig. 4.
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Fig. 1. State-space partition for nominal control
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Fig. 2. State-space partition for open-loop robust

control
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Fig. 3. open-loop robust control simulation
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6. CONCLUSION

This paper presents an explicit solution to the

robust MPC for linear hybrid systems via para-

metric programming. A min-max based feasibil-

ity analysis is described to deal with the worst

case uncertainty. The open-loop and closed-loop

controller performance guarantees system stabil-

ity and feasible operation. The resulting con-

trollers yield a piecewise affine control law which

can be implemented on-line by simple function

evaluations. The proposed framework can be ex-

tended to account for the polytopic uncertainty

(Manthanwar et al., 2005).
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