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Abstract: An optimal estimation problem is studied with a non-classical information
architecture in the vehicle formation, coordinated control context. This information
architecture prohibits the direct application of Kalman filter approaches. This paper
shows that such a suboptimal feasible estimator is attainable by recasting it as a linear
matrix inequality convex optimization problem. A simple example is given and several
interesting design issues are then discussed. Copyright c©2005 IFAC
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1. INTRODUCTION

Coordinated control is an approach to manipulating
a large scale system, which consists of many au-
tonomous but communicating subsystems, to fulfil
certain tasks. An example is the control of a fleet
of vehicles to maintain their formation. Typically the
size of the entire system prohibits a global solution
because the collection of the global state information
and the computation of a global control law are overly
demanding. Furthermore the localization of the sen-
sors and actuators on individual subsystems militates
against a global solution because of limited commu-
nication capacity. Therefore, in this coordinated con-
trol context, each subsystem runs a localized control
law based on some limited information of the whole
system. There are two central design issues; the local
control law and the information architecture, the latter
of which decides the amount and the accuracy of the
available information for a subsystem.

Recent papers studying decentralized and distributed
control with communication constraints have tended
to concentrate on the best achievable performance

(Tatikonda and Mitter, 2004) or the minimal permissi-
ble communication bandwidth (Nair et al., 2004). The
difficulty of optimal control in a decentralized prob-
lem with non-traditional information structure was
demonstrated by Witsenhausen (Witsenhausen, 1968)
in his famous example, which is still the subject of
research (Lee et al., 2001). Here we adopt a different
approach focused on feasible design rather than opti-
mality.

The tools developed in (Yan and Bitmead, 2003; Yan
and Bitmead, 2005) rely on constrained full-state
Model Predictive Control (MPC) married with state
estimation based on Kalman filtering to formulate a
coordinated vehicle control problem. Interactions be-
tween vehicles are incorporated via a no-collision con-
straint being included into the MPC problems solved
locally at each vehicle. Each vehicle estimates the
states of its neighboring vehicles and the state estimate
covariance is used in tightening these constraints,
through the requirement to maintain a small proba-
bility of collision. Thus typically large state estimate
covariance leads to more conservative constraints.



With these design principles for coordinated control
in mind, we need to develop a systematic approach to
the construction of state estimators for other vehicles’
states using communicated measurements and for the
computation of the resultant state estimate covari-
ances. The contribution of this paper is to formulate
and solve this problem with a non-traditional infor-
mation structure when a priori information is shared
about all the local control laws. This solution is pre-
computed globally to determine the bandwidth assign-
ment of the communication capacity in links between
the individual vehicles in the coordinated formation.

This paper studies the question of how a vehicle
achieves the best local estimation of its neighbors from
its localized information. A simple, but generalizable,
two-vehicle scenario is considered. The local control
laws are assumed to be a linear feedback of both state
vectors (actually the local state estimates). This kind
of mixed feedback control is usual in the coordinated
control context, although it does not fully capture con-
strained model predictive control. In a classical infor-
mation architecture, each vehicle needs the measure-
ments and the control values of the others to calculate
a shared common state estimate. This paper studies a
non-classical type. The control values cannot be trans-
mitted, instead the control laws (i.e. feedback gains)
are known at every site. Each vehicle runs a Kalman
filter to estimate its own state and needs to design an
observer for the states of other vehicles. The key issues
are the calculation of observer gains and covariance
matrices of the observer errors. The covariance mea-
sures the quality of the observer estimate, may be used
to recast the constraints in MPC, and is important for
accomplishing the system performance requirement as
in (Yan and Bitmead, 2003).

The observers take a similar form to a Kalman filter
except for the exact control values and the observer
gain matrices. As only control laws are given, the ob-
servers use the feedback of the best estimate at hand.
Because of the mixed structure of the controllers, the
observer errors depend on each other as well as the
Kalman filter errors. As a result, the covariance matrix
calculation of each observer error is much more com-
plicated than that of a Kalman filter. Our method is to
write down an augmented error system including the
two Kalman filter errors and the two observer errors.
The covariance matrix of the augmented system has
a clean form and linear matrix inequality techniques
can help to find a related optimal observer gain that
minimizes a function of the estimation error covari-
ance while taking care of the stability requirement in
steady state. Details are written in Section 2 following
by a scalar example in Section 3.

2. PROBLEM FORMULATION

This section is devoted to a simple two-vehicle forma-
tion problem. Our focus is to formulate a reasonable
state estimator according to the non-classical informa-
tion structure, which does not allow transmitting the
control actions but instead assumes the state feedback
control laws are known to all parties a priori.

The dynamics and the measurement of the vehicles
can be described as follows:

Vehicle 1

x1
k+1 = A1x1

k +B1u1
k +w1

k , (1)

y1
1,k =C11x1

k + v1
1,k, (2)

y2
1,k =C12x2

k + v2
1,k. (3)

Vehicle 2

x2
k+1 = A2x2

k +B2u2
k +w2

k , (4)

y1
2,k =C21x1

k + v1
2,k, (5)

y2
2,k =C22x2

k + v2
2,k. (6)

Where x stands for the state, y for the measurement,
w for the process noise with wi

k ∼ N(0,Qi) and v
for measurement noise with vi

j,k ∼ N(0,Rji). There
are superscripts and subscripts throughout this paper
with superscripts meaning ‘of ’ and subscripts mean-
ing ‘at’; for example, y1

2,k is the measurement of vehi-
cle 1 taken by (at) vehicle 2.

There are four state estimators based on different sets
of measurements. The state estimators using y1

1 and y2
2

are standard Kalman filters,

Kalman Filter 1@1:

x̂1
1,k+1|k=A1x̂1

1,k|k +B1u1
k ,

x̂1
1,k+1|k+1=x̂1

1,k+1|k +M11(y1
1,k+1 −C11x̂1

1,k+1|k),

M11=A1Σ1
1,k|kC

T
11(C11Σ1

1,k|kC
T
11 +R11)−1,

Σ1
1,k+1|k+1=A1Σ1

1,k|kA
T
1 −M11C11Σ1

1,k|kA
T
1 +Q1.

(7)

Kalman Filter 2@2:

x̂2
2,k+1|k=A2x̂1

1,k|k +B2u2
k ,

x̂2
2,k+1|k+1=x̂2

2,k+1|k +M22(y2
2,k+1 −C22x̂2

2,k+1|k),

M22=A2Σ2
2,k|kC

T
22(C22Σ2

2,k|kC
T
22 +R22)−1,

Σ2
2,k+1|k+1=A2Σ2

2,k|kA
T
2 −M22C22Σ2

2,k|kA
T
2 +Q2.

(8)

The (cross) estimators based on y1
2 and y2

1 are more
interesting and the major difficulty is the lack of the
knowledge about the control between the two vehicles.
Nevertheless, these two estimators take an observer
form similar to a Kalman filter,



Estimator 1@2:

x̂1
2,k+1|k=A1x̂1

2,k|k +B1ū1
k ,

x̂1
2,k+1|k+1=x̂1

2,k+1|k +M21(y1
2,k+1 −C21x̂1

2,k+1|k).
(9)

Estimator 2@1:

x̂2
1,k+1|k=A2x̂2

1,k|k +B2ū2
k ,

x̂2
1,k+1|k+1=x̂2

1,k+1|k+M12(y2
1,k+1−C12x̂2

1,k+1|k).
(10)

Remarks:

• The controls applied in these two estimators ū1

and ū2 are different from the real values of u1

and u2. Suitable choices of ū1 and ū2 should
be decided according to the off line knowledge
about u1 and u2 and the associated control laws.

• The observer gain matrices M21 and M12 are
unknown at the moment. It will be shown soon
that the gains relate to the state error covariance
matrices, i.e. the performance measure, of these
two cross estimators. Hence the task of this paper
is seeking design values of M21 and M12.

• The state estimate covariance has an effect on
control performance. Studying the covariances
off line will enable us to manage them (and hence
the control performance) via adjusting/designing
the proper information architecture (e.g. adjust-
ing Ri j which is directly tied to the assigned
communication channel capacity).

The key issue for Estimator 1@2 and Estimator 2@1
to work is the knowledge of the control. In this paper,
each vehicle will apply a state (estimate) feedback
control law involving both its own and the other’s state
estimate. At this stage, we assume this control to be
linear and, since coordination is involved, to include
all local state estimates.

u1
k = K11x̂1

1,k|k +K12x̂2
1,k|k + l1,

u2
k = K21x̂1

2,k|k +K22x̂2
2,k|k + l2.

The control gains Ki j and the additive constant vectors
li are known to both of the vehicles. Then it is reason-
able to apply

ū1
k = K11x̂1

2,k|k +K12x̂2
2,k|k + l1,

ū2
k = K21x̂1

1,k|k +K22x̂2
1,k|k + l2.

Usually ūi and ui are not the same. Hence the ‘cross
estimation’ will have a covariance larger than that of
the Kalman filter, which should be minimized or at
least bounded as per requirement.

To derive the covariance matrix of the estimates, an
expression for the estimate errors should be derived
first. As usual define x̃i

j = xi − x̂i
j, then

Filtering Error Equations:

X̃k+1 = M̄rĀX̃k + M̄rB̄wk − M̄vk+1, (11)

where

X̃· =

⎡
⎢⎢⎢⎣

x̃1
1,·|·

x̃1
2,·|·

x̃2
1,·|·

x̃2
2,·|·

⎤
⎥⎥⎥⎦ , wk =

[
w1

k
w2

k

]
,

vk+1 =

⎡
⎢⎢⎣

v1
1,k+1

v1
2,k+1

v2
1,k+1

v2
2,k+1

⎤
⎥⎥⎦ , M̄r = (I− M̄C̄),

Ā =

⎡
⎢⎢⎣

A1 0 0 0
−B1K11 (A1 +B1K11) −B1K12 B1K12

B2K21 −B2K21 (A2 +B2K22) −B2K22

0 0 0 A2

⎤
⎥⎥⎦ ,

B̄ =

⎡
⎢⎢⎣

1 0
1 0
0 1
0 1

⎤
⎥⎥⎦ , M̄ =

⎡
⎢⎢⎣

M11 0 0 0
0 M21 0 0
0 0 M12 0
0 0 0 M22

⎤
⎥⎥⎦ ,

C̄ =

⎡
⎢⎢⎣

C11 0 0 0
0 C21 0 0
0 0 C12 0
0 0 0 C22

⎤
⎥⎥⎦ .

Note that from (11), if the initial estimation errors have
zero means E(x̃i

j,0|0) = 0, it follows that E(x̃1
2,k|k) =

E(x̃2
1,k|k) = 0, meaning that Estimator 1@2 and Esti-

mator 2@1 are unbiased estimators. Also note that the
known constant terms l1 and l2 vanished in the filtering
error equation (11).

Consider the steady state covariance P = cov(X̃), it
follows that

P = M̄rĀPĀT M̄T
r +M̄rB̄QB̄T M̄T

r +M̄RM̄T , (12)

where Q =
[
Q1 0
0 Q2

]
,R =

⎡
⎢⎢⎣

R11 0 0 0
0 R21 0 0
0 0 R12 0
0 0 0 R22

⎤
⎥⎥⎦ .

First of all, it is required that Estimator 1@2 and
Estimator 2@1 should be stable. If a feasible matrix
P can be found for the following matrix inequality:

−P+M̄rĀPĀTM̄T
r +M̄rB̄QB̄TM̄T

r +M̄RM̄T < 0,

P > 0,
(13)

then it provides an upper bound of the algebraic so-
lution P of (12) and hence the estimators are stable.
The “<” sign is used in (13) instead of “≤” to avoid
the semi-definite problem. Actually, the solution of
(13) from a numerical solver is arbitrarily close to the
solution of (12). Taking the Schur complement of (13)
yields

⎡
⎣ −P Ā+M̄C B+M̄D

ĀT+CTM̄T −P−1 0
BT+DTM̄T 0 −I

⎤
⎦ < 0. (14)

where

C = −C̄Ā,B =
[
B̄Q

1
2 0

]
,D =

[
−C̄B̄Q

1
2 R

1
2

]
.

Multiplying (14) on the left by T=blockdiag(P−1,I,I)
and on the right by T T = T yields the following linear
matrix inequality(LMI).



Theorem 1. Matrix L and and symmetric matrix Y
satisfying the LMI

⎡
⎢⎢⎢⎣

−Y (Y−LC̄)Ā (Y−LC̄)B̄Q
1
2 LR

1
2

ĀT(Y−C̄TLT ) −Y 0 0

Q
1
2B̄T(Y−C̄TLT) 0 −I 0

R
1
2 LT 0 0 −I

⎤
⎥⎥⎥⎦< 0, (15)

exist if and only if P = Y−1, M̄ = PL, and M̄r = I −
M̄C̄ satisfy matrix inequality (13).

Note that this is a standard construction in optimal fil-
tering derived using LMIs and minimization (Skelton
et al., 1998), and (Colaneri et al., 1997). The appeal
of (15) versus (13) is that this latter inequality is linear
in the matrix variables Y and L, which makes its solu-
tion and optimization tractable. From the perspective
of formulating and solving non-classical information
architecture control problems, however, an incipient
problem arises through the inability to explore a block
diagonal structure on the computed solution M̄ from
(14) without also imposing such a structure on Y and
P. Evidently from the structure of Ā a block diag-
onal P is not typically of interest. Indeed it is the
cross-covariance between terms such as x̃1

1,k and x̃1
2,k

that captures the information architecture. Without a
structural condition on M̄, the solution of minimiz-
ing tr(Y−1) subject to (15) versus (13) would yield
the classical, fully-shared-measurement Kalman fil-
tering solution. To explore the development of an
LMI approach to finding feasible solutions to the non-
standard information architecture problem, we employ
a result of (de Oliveira et al., 1999).

Lemma 1. (de Oliveira et al., 1999) The following
statements are equivalent.

(i) There exists a symmetric matrix P > 0 such that

AT PA−P < 0.

(ii) There exist a symmetric matrix P and a matrix G
such that [−P AT GT

GA −G−GT +P

]
< 0.

Now we use Lemma 1 to establish Theorem 2.

Theorem 2. Matrices G, Y , and L satisfying⎡
⎣−G−GT+Y GA+LC GB+LD

ATGT+CTLT −Y 0
BTGT+DTLT 0 −I

⎤
⎦ < 0, (17)

yield P = Y−1 and M̄ = G−1L which satisfy (13).
Conversely, P and M̄ satisfying (13) provide Y = G =
P−1, L = P−1M̄ which satisfy (17).

Corollary 1. If G and L are constrained to be block
diagonal matrices in (17), then P = Y−1 and M̄ =
G−1L are also feasible in (13) with M̄ block diagonal.

Corollary 2. If matrices G, Y , and L, with G and L
block diagonal conformably with X̃k, can be found
satisfying (17) then the state estimators (7)–(10), with
the gains given by the block diagonal elements of M̄ =
G−1L, are stable and their covariances are bounded
above by the corresponding diagonal blocks of P.

By inspecting the finer structure of matrices A and B,
the matrix on the left hand side of (17) is linear in the
unknowns Y , L, and G. A feasible solution from (17)
will give us feasible values of P, M12 and M21.

Furthermore, one may aim to seek a feasible solution
of (17), which minimizes tr(P) = tr(Y−1). To do this
we introduce a new variable W such that

W > Y−1, (18)

and then minimize the trW . The Schur compliment of
(18) is [−W I

I −Y

]
< 0. (19)

This yields the following convex LMI optimization
problem to provide a solution for the observer gains
for coordinated control with non-standard information
structure.

Min Cov:

min
G,L,W,Y

trW

subject to:⎡
⎣−G−GT+Y GA+LC GB+LD

ATGT+CTLT −Y 0
BTGT+DTLT 0 −I

⎤
⎦ < 0,

[−W I
I −Y

]
< 0,

(20)

where G and L are block diagonal Y and W are sym-
metric.

Note that the covariances Σ1
1 and Σ2

2 from (7) and (8)
are constant. Hence, once we get solutions G, Y and
L from (20), the Kalman gains M̄11 and M̄22 will be
replaced by M11 and M22.

3. EXAMPLE

In this section, the result from Section 2 will be
demonstrated with a scalar example. The notations
remain the same as in Section 2 with only the matrix
operation eased to the scalar calculation.

Fig. 1. Two mobile beads cooperation task



Consider two coordinated autonomous mobile beads
on the real line described by

x1
k+1 = x1

k +u1
k +w1

k , (21)

x2
k+1 = x2

k +u2
k +w2

k . (22)

At each sampling time k, each solves the same opti-
mization problem based on their local information:

min
ui

Jk =(x1
k+1 + x2

k)
2 +(x1

k+1 +1)2

+(x2
k+1 + x1

k)
2 +(x2

k+1 −1)2. (23)

The coordination tasks captured by Jk are:

(i) to drive vehicle 1 to −1 and vehicle 2 to +1;
(ii) to maintain the 2-vehicle formation symmetric

about the origin, if the initial positions are sym-
metric.

Note that, emphasizing the estimation part of the prob-
lem, the coordination control task (ii) is merely il-
lustrative. This task is a simple one-step-ahead LQG
problem. The solution is:

u1
k =−x̂1

1,k|k −
1
2

x̂2
1,k|k +1,

u2
k =−1

2
x̂1

2,k|k − x̂2
2,k|k −1.

Following the procedure in Section 2, the M̄ solved
from (20) is

M̄ = diag(0.7085,0.7085,0.7085,0.7085).

Since we can have M11 and M22 pre-computed from
the Kalman filter equations (They both equal 0.6180
in this example.), we replace M̄(1,1) and M̄(4,4) with
0.6180. Thus, the gain matrix applied is:

M̄app = diag(0.6180,0.7085,0.7085,0.6180).

The achieved steady state covariance matrix via apply-
ing M̄app is

Pachv =

⎛
⎜⎜⎝

0.6180 0.1788 −0.0245 0
0.1788 0.6569 −0.0371 −0.0245
−0.0245 −0.0371 0.6569 0.1788

0 −0.0245 0.1788 0.6180

⎞
⎟⎟⎠ .

To demonstrate the validity of our technique, co-
variances, in comparison with Pachv, were computed
with various M̄app(2,2) and M̄app(3,3) values. The
Figure 2 shows the Error Covariances of Estimator
2@1 by changing the observer gains M12 = M21. The
achieved steady state covariance of Estimator 2@1 is
0.6569; the optimal covariance, suggested in Figure 2,
is 0.6423.

At this stage, one may explore some design issues. For
example, the controller in (Yan and Bitmead, 2003)
deals with probabilistic constraints and, once the con-
straints become active, string instability occurs. In this
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Fig. 2. Error Covariances of Kalman filter 2@1 depending on M12

and M21

problem, collision between the two beads is not al-
lowed. Suppose that bead 1 and bead 2 are already in
steady state and at time k bead 2 computes x̂1

2,k|k and

x̂2
2,k|k. One may ask what value of R21 can guarantee

that the probability of collision is smaller than a cer-
tain level say 5%, i.e. P(x2

k ≥ x1
k) ≤ 5%. By the same

method in (Yan and Bitmead, 2003), one can obtain

Σ1
2 ≤

l2

α2 −Σ2
2, (24)

where α is the solution of Φ(α) = 1− 5% and l =
x̂1

2,k|k − x̂2
2,k|k, Φ(·) is the standard normal distribution

function. Solving (24) provides a choice of R21 such
that if bead 2 observes that its distance from bead 1
is bigger than l then the probability of collision is
smaller than 5%; if it sees the opposite case, it should
take some emergency response procedure.

4. CONCLUSION

This paper studies the local estimator formulation
in the vehicle coordinated control problem. Though
the non-classical information architecture complicates
the structure of the local estimator, LMI techniques
can help the design. The result makes the study of
more design issues in the coordinated control context
possible.
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