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Abstract: The paper addresses the LQ control problem for systems with countable Markov
jump parameters, and the associated coupled algebraic Riccati equations. The problem is
considered in a general optimization setting in which the solution is not required to be
stabilizing in any sense. We show that a necessary and sufficient condition for a solution
to the control problem to exist is that the Riccati equations have a nonempty set of
solutions, which generalizes previous known results requiring stabilizability as a sufficient
condition. We clarify the connection between the minimal solution of the Riccati equation
and the control problem, showing that the minimal solution provides the synthesis of the
optimal control. The derived results strengthen the relations of the theory of Markov jump
systems with the one of linear deterministic systems. An illustrative example is included.
Copyright c©2005 IFAC
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1. INTRODUCTION

In this paper we consider the linear quadratic prob-
lem for infinite Markov jump linear systems (IMJLS)
and the associated infinite countable set of coupled
algebraic Riccati equations (ICARE), which constitute
solid grounds in the theory of dynamical systems.

The IMJLS form a special class of systems which
can be described by a switching of countable many
linear forms, in which the switching is driven by an
underlying Markov chain with infinite state space.
Apart from providing meaningful models for systems
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subject to abrupt changes in their structure, see e.g.
(Athanset al., 1977) and (Sworder and Rogers, 1983),
IMJLS present numerous results that parallel the lin-
ear deterministic theory (Costa and do Val, 2002b).
In the simpler context of finite Markov state space,
we mention that the linear quadratic problem was
studied in (Ji and Chizeck, 1990), or in (Costaet
al., 1997) and (Costa and Fragoso, 1995) in a convex
programming perspective; methods of solutions for
the associated Riccati equations were considered in
(do Val and Costa, 2002), (do Valet al., 1999) and
(Rami and Ghaoui, 1996) and some basic concepts
such as detectability were taken into account in (Costa
and do Val, 2002a). In the infinite context considered
here, (Costa and Fragoso, 1995) and (Fragoso and
Baczynski, 2001) provide seminal results, including



the derivation of the optimal control for the finite hori-
zon linear quadratic problem and the stationary opti-
mal control (among the stabilizing controls) for the
infinite horizon problem; the concept of detectability
and the role that it plays as a condition for stabilizabil-
ity of solutions was devised in (Costaet al., n.d.b) and
(Costaet al., n.d.a) in a general framework.

A common requirement in the field is that the control
should belong to a class of stabilizing controls, and
almost all the research effort in the area was devoted
to this setup, including (Costa and Fragoso, 1995) and
(Fragoso and Baczynski, 2001); this observation also
holds true for previous works dedicated to IMJLS.
On the other hand, in the purely deterministic setting,
the LQ problem without stability constraints has long
been dealt with, e.g. (Kucera, 1972), (Martensson,
1971) or (Molinari, 1977, Section 6).

The present paper deals with the general jump lin-
ear quadratic problem (GJLQ) that does not require
stabilizability of controllers in any sense. Apart from
the theoretical and practical interests of the results,
we remark that they strengthen the relations of the
IMJLS theory with that one of linear deterministic
systems. The main results of the paper are summarized
as follows. We show that the optimal cost reads as a
quadratic form and that the optimal control is a sta-
tionary state feedback control, see Theorem 1. We also
show that the set of solution of the ICARE captures the
solution for the GJLQ, see Corollary 1, and the fact
that the ICARE have a nonempty set of solutions if
and only if C1 holds, see Theorem 2. The connection
between the minimal solution to the ICARE and the
GJLQ problem is then addressed and we show that
the limit M is identified with the minimal solution to
the ICARE, allowing us show in Theorem 3 that the
solution to the GJLQ problem is synthesized byM.

2. NOTATION, BASIC CONCEPTS AND
PROBLEM FORMULATION

Let Rn represent the usual linear space of alln-
dimensional vectors. Assume thatRr,n (respectively,
Rn) represents the normed linear space formed by all
r×n real matrices (respectively,n×n). ForU ∈ Rn,r ,
U ′ denotes the transpose ofU . For U,V ∈ Rn, U >
V (U ≥ V) indicates thatU −V is positive definite
(semidefinite).Rn0 (Rn+) represents the closed convex
cone{U ∈Rn : U =U ′ ≥ 0} (the open cone{U ∈Rn :
U = U ′ > 0}).
Consider the setS = {1,2, . . .}. Let Hr,n

∞ denote the
linear space formed by sequences of matricesH =
{Hi ∈ Rr,n; i ∈ S} such thatsupi∈S ||Hi || < ∞; also,
let H

r,n
1 = {H ∈ Hr,n

∞ : ∑i∈S ||Hi || < ∞}. We denote
Hn

∞ ≡ Hn,n
∞ , and Hn0

∞ (H∞
n+) represents the closed

cone{H ∈Hn
∞ : Hi ∈Rn0, i ∈ S} (the open cone{H ∈

Hn
∞ : Hi ∈Rn+, i ∈ S}), and similarly forH1, Hn0

1 and
Hn+

1 .

ForH,W∈Hn
∞, H ≥W indicates thatHi ≥Wi for each

i ∈ S. The notation is similar for basic mathematical
relations involving elements ofHr,n

∞ ; e.g., H = W
means thatHi =Wi for eachi ∈ S. In the sequel, capital
letters denote elements ofHr,n

∞ and capital letters with
an index denote elements ofRr,n.

The IMJLS that we deal with in this paper are defined
by the following stochastic differential equation, in a
probabilistic space(Ω,F,P),

Φ : ẋ(t) = Aθ(t)x(t)+Bθ(t)u(t),

t ≥ 0, x(0) = x0, θ(0) = θ0
(1)

where x(·) ∈ Rn, u(·) ∈ Rr , Ai , i ∈ S, belong to a
given sequence of matricesA = {Ai , i ∈ S} ∈Hn

∞ and
similarly for B ∈ Hn,r

∞ . The jump variableθ(t) is the
state of an underlying continuous-time homogeneous
Markov chainΘ = {θ(t); t ≥ 0} having the countable
state spaceS and a stationary transition rate matrix
Λ = [λi j ], i, j ∈ S.

The state of systemΦ is the compound variable(x,θ).
The controlu is assumed to belong to the class of
admissible controlsUT , T ∈ [0,∞), which is defined as
in (Fragoso and Baczynski, 2001):UT is the class of
all Borel measurable functionsu : {Rn,S, [0,T]}→Rr

such that, for eachx,z∈ Rn, i ∈ S andt ∈ [0,T],

(i) ‖u(x, i, t)−u(z, i, t)‖ ≤ `‖x− z‖ for some` ∈ R
(Lipschitz);

(ii) there existsc ∈ R such that‖u(x, i, t)‖ ≤ c(1+
‖x‖) (growth condition).

The next basic concepts of stochastic stability and sta-
bilizability are useful for the discussion that follows.

Definition 1.(S-stability). We say that(A,Λ) is stochas-
tically (S) stable when

R ∞
0 E{||x(t)||2dt}< ∞, for each

x0 ∈ Rn andθ0 ∈ S, wtih x(t) given by (1) withu≡ 0.

Definition 2.(S-stabilizability). We say that(A,B,Λ)
is S-stabilizable when there existG ∈ Hr,n

∞ such that
(A+BG,Λ) is S-stable.

We shall deal with the cost functionals

WT
u,S(x, i) := E

{Z T

0
x(τ)′Qθ(τ)x(τ)

+u(τ)′Rθ(τ)u(τ)dτ+x(T)′Sθ(T)x(T)
} (2)

whereT ∈ [0,∞) is the horizon length, matricesQi , Si

andRi belong to the sequences of matricesQ,S∈Hn,0
∞

andR∈Hn,+
∞ respectively, and the expected value is

with respect to the initial conditionx0 = x andθ0 = i.
For ease of notation, we define

Wu(x, i) := lim
T→∞

WT
u,S≡0(x, i), (3)

WT
S (x, i) := inf

u∈UT
WT

u,S(x, i). (4)

Problem Formulation. The general infinite jump lin-
ear quadratic (GJLQ) problem is the infinite-horizon
control problem that consists of minimizing overU∞



the cost functionalWu(x, i), i.e., for each initial condi-
tion x0 ∈ Rn andθ0 ∈ S, to find

W(x0,θ0) := inf
u∈U∞

Wu(x0,θ0)

and the associate optimal controluopt ∈ U∞. We
say that a solution exists when the optimal cost is
bounded.

Remark 1.In this paper, the GJLQ problem is a strict
optimization problem in the sense that we do not
require that the solution stabilizes the system in any
sense. Accordingly, the class of controlsU is not
necessarily stabilizing.

The following condition on the boundedness of the
optimal cost is connected to the idea of existence of
solutions, a key issue in the paper.

C1. (Existence of Solution to the GJLQ Problem).
There existsγ ∈R such that, for eachx∈Rn and
i ∈ S, W(x, i)≤ γ‖x‖2.

Remark 2.It can be shown following the arguments
of (Fragoso and Baczynski, 2001, Proof of Proposition
6.9) that S-stabilizability implies C1. This is surpris-
ingly in the sense that C1 requires an uniform bound
for W whereas stabilizability requires only finiteness
of Wu with u(t) = Gθ(t)x(t) andG given in the defini-
tion. The converse assertion does not hold true, even in
the purely deterministic case (e.g. whenA = I , B = 0
andQ = 0, leading toW = 0).

In connection to the GJLQ problem, in this paper
we address the following ICARE. ConsiderH =
(H1,H2, . . .) ∈ Hn0

1 and we introduce the nonlinear
operatorL : Hn0

1 →Hn
1, L(H) = (L1(H),L2(H), . . .),

Li(H) = A′iHi +HiAi −HiBiR
−1
i B′iHi +Qi + ∑

j∈S

λi j H j .

(5)
The ICARE are a set of countable interconnected
Riccati equation in the variableP = (P1,P2, . . .) ∈
Hn0

1 , which reads as follows

L(P) = 0. (6)

Definition 3.(Minimal solution to the ICARE). We say
that a solutionM ∈Hn0

1 of the ICARE in (6) is mini-
mal if M ≤ P for any solutionP∈Hn0

1 of the ICARE.

We finish the section by introducing, for a fixedT ∈
[0,∞) and for L = (L1,L2, . . .) ∈ Hn0

1 , the Riccati
differential equation

ṖT(t)+L(PT(t)) = 0, PT(T) = L, 0≤ t ≤ T.
(7)

The following result is presented for ease of reference,
see (Fragoso and Baczynski, 2001, Proposition 4.9).

Proposition 1.There exists a unique solutionPT(t) ∈
Hn0

1 , t ∈ [0,T], T ∈ [0,∞), for (7).

3. PRELIMINARY RESULTS

Next we present some useful inequalities concerning
the finite and infinite horizon optimal costs. The proof
is ommited.

Lemma 1.The following assertions hold:

(i) WT
V (·)≥WT

S (·) wheneverV ≥ S;

(ii) WT
u,V(·)≥WT

u,S(·) wheneverV ≥ S;

(iii) W(·)≥WT
S≡0(·).

The next result concerning the finite-horizon jump lin-
ear quadratic control problem follows from (Fragoso
and Baczynski, 2001, Proposition 5.6 and 5.8).

Proposition 2.Consider PT(t) the solution for the
Riccati differential equation (7) with terminal condi-
tion L = S. Then, the optimal control for the finite-
horizon control problem is given by

uopt(t) = R−1
θ(t)B

′
θ(t)P

T
θ(t)(t)x(t), t ∈ [0,T],

and the optimal cost reads as follows

WT
L (x, i) = minu∈UTWT

u,L(x, i) = x′PT
i (0)x.

Next we present a sufficient condition for convergence
of PT(0) asT → ∞ to a solution of the ICARE. The
result is adapted from the proof of Proposition 6.9 of
(Fragoso and Baczynski, 2001), which is of particular
interest here; the proof is omitted.

Proposition 3.Consider the Riccati differential equa-
tion (7). Assume thatL≡ 0 and there existsγ≥ 0 such
thatPT

i (0)≤ γI , ∀i,T. Then,

PT
i (0)→M asT → ∞,

whereM ∈Hn0
1 is a solution for the ICARE.

4. MAIN RESULTS

The first goal in this section is to show how the
solution to the GJLQ problem is connected to the
solution of the Riccati differential equation (7) and the
fact that the optimal solution is in the stationary state
feedback form. The next result will be needed.

Lemma 2.Consider the Riccati differential equation
(7). Assume thatL≡ 0 and that C1 holds. Then,

PT(0)→M asT → ∞, (8)

whereM ∈Hn0
1 is a solution for the ICARE.

Proof. Employing Proposition 2 and item (iii) of
Lemma 1, respectively, we have for eachx ∈ Rn and
i ∈ S that

x′PT
i (0)x = WT

L≡0(x, i)≤W(x, i)



Now, from assumption C1 we have thatW(x, i) ≤
γ‖x‖2 = x′(γI)x, thus leading to

x′PT
i (0)x≤ x′(γI)x

for eachx∈Rn andi ∈ S, thus attending the condition
in Proposition 3, which provides the result.

The optimal control is derived in the next theorem.
The control is synthesized viaM the limit of PT(0)
asT → ∞, as in Lemma 2.

Theorem 1.Assume that condition C1 holds and let
M be the limit in (8). Then, the optimal control to the
GJLQ problem is the stationary feedback policy

uopt(t) = Gθ(t)x(t), t ≥ 0

whereG =−R−1B′M, and the optimal cost reads as

W(x, i) = x′Mix.

Proof. From Proposition 2 we have thatWT
L≡0(x, i) =

x′PT
i (0)x and taking limits and employing Lemma 2

we obtain:

W(x, i) = lim
T→∞

WT
L≡0(x, i) = lim

T→∞
x′PT

i (0)x = x′Mix.

(9)

Notice that, in principle, the optimal control obtained
above, via Proposition 2, is not stationary. Next we
define the stationary control

ū(t) =−R−1
θ(t)B

′
θ(t)Mθ(t)x(t)

and we show that it is optimal. LetL = S = M,
recalling thatS is the terminal data in (2) andL is
the terminal condition in (7). Lett → XT(t) represent
the solution to the Riccati differential equations (7)
with XT(T) = L = M. Since Lemma 2 provides that
L(M) = 0, one can easily check from (7) that

XT(t) = M, ∀T ≥ 0, t ∈ [0,T],

In this context, Proposition 2 ensures thatū is the
optimal control for the finite horizon control problem
with S= M and

WT
ū,S≡M(x, i) = x′XT

i (0)x = x′Mix, ∀T ≥ 0. (10)

Now, from Lemma 1 (ii) we have thatWT
ū,S≡0(x, i) ≤

WT
ū,S≡M(x, i), ∀T ≥ 0. This inequality, (9) and (10) lead

to

Wū(x, i) = lim
T→∞

WT
ū,S≡0(x, i)

≤ lim
T→∞

WT
ū,S≡M(x, i) = x′Mix = W(x, i).

(11)

The opposite relationWū(x, i) ≥W(x, i), comes from
definition of the problemP, completing the proof.

Now we turn our attention to the relationship between
the GJLQ problem and the ICARE. We start showing
that the ICARE serve as a necessary condition for
optimality in the GJLQ problem, as follows.

Corollary 1. Assume thatM ∈Hn0
1 is such thatW(x, i)=

x′Mix, for eachx∈Rn andi ∈ S. Then,M is a solution
to the ICARE, i.e.,L(M) = 0.

Proof. We omit the details. The fact thatW(x, i) =
x′Mix andM ∈ Hn0

1 implies that C1 holds withγ :=
supi∈S ‖Mi‖. Theorem 1 provides that the optimal cost
reads asW(x, i) = x′Xix whereX = limT→∞ PT(0) ∈
Hn0

1 , thus leading toM = X. Lemma 2 provides that
L(M) = 0.

The fact that a solution to the GJLQ problem exists
(i.e., C1 holds) if and only if a solution to the ICARE
exists is presented in what follows. We shall need the
next result.

Lemma 3.Let P be a solution for the ICARE, i.e.,
P∈Hn0

1 is such thatL(P) = 0. Then,

W(x, i)≤ x′Pix.

Proof. The arguments are similar to the ones in the
proof of Theorem 1 and we omit the details. LetL =
S= P and letXT(t) represent the solution to the Ric-
cati differential equations (7) withL = P. Employing
Lemma 2 one can check that

XT(t) = P, ∀T ≥ 0, t ∈ [0,T],

and employing Lemma 1 (ii) and Proposition 2 respec-
tively we get that

WT
S≡0(x, i)≤WT

S≡P(x, i) = x′XT
i (0)x= x′Pix, ∀T ≥ 0.

Taking limits, we finally obtainW(x, i)≤ x′Pix.

Theorem 2.A solution to the GJLQ problem exists if
and only if there exists a solution to the ICARE, i.e.,
there existsP∈Hn0

1 such thatL(P) = 0.

Proof. Sufficiency. Let

γ := sup
i∈S

‖Pi‖.

Notice thatγ is well defined sinceP ∈ Hn0
1 ⊂ Hn0

∞ .
Then, from Lemma 3 we evaluate

W(x, i)≤ x′Pix≤ γ‖x‖2

and C1 holds.

Necessity. Assuming that C1 holds, Lemma 2 ensures
that M = limT→∞ PT(0) ∈ Hn0

1 is a solution to the
ICARE.

Remark 3.In the general context of IMJLS, both S-
stabilizability and solvability of the ICARE are com-
plex to check. The conditions are testable in the finite
state space case withS = {1, . . . ,N}, see (Costa and
Marques, 2000) and (Costa and do Val, n.d.).

In the sequel we clarify the connection between the
minimal solution of the ICARE and the solution to the
GJLQ problem. We need the next interesting result.

Lemma 4.Assume that C1 holds and letM ∈ Hn0
1 .

M is the limit in (8) if and only ifM is the minimal
solution to the ICARE.



Proof. Sufficiency. SinceM is a solution to the ICARE,
Theorem 2 provides that C1 holds and Lemma 2
ensures that the limit in (8) exists. Now we assume
that the limit isM̄ and we show that̄M = M. Theorem
1 and Lemma 3 allow us to write

x′M̄ix = W(x, i)≤ x′Mix, ∀x∈ Rn, i ∈ S,

which leads to
M̄ ≤M.

On the other hand, Lemma 2 provides thatM̄ is a
solution for the ICARE, and from Definition 3,

M̄ ≥M.

Necessity. SinceM is the limit in (8), from Lemma 2
we get thatM is a solution for the ICARE. Let us deny
the assertion in the theorem and assume thatM is not
the minimal solution, i.e., that there exists a solution
P to the ICARE and somex∈ Rn andi ∈ S for which
x′Mix > x′Pix. This and Lemma 3 lead to

x′Mix > x′Pix≥W(x, i). (12)

However, Theorem 1 provides that

W(x, i) = x′Mix

thus contradicting (12).

The fact that the minimal solution to the ICARE
provides the strictly optimal control for the GJLQ
problem is now easy to show.

Theorem 3.Let M be the minimal solution to the
ICARE. Then, the optimal control for the GJLQ prob-
lem is the stationary feedback control

uopt(t) = Gθ(t)x(t)

whereG =−R−1B′M, and the optimal cost reads as

W(x, i) = x′Mix.

Proof.The proof follows immediately from Theorems
1 and 2, and Lemma 4.

Remark 4.It is a well known fact that the solution to
the LQ problem restricted to stabilizing controllers is
given by a stationary feedback law, in parallel with
Theorem 3. However, it is associated with the stabiliz-
ing solution of the ICARE, see (Fragoso and Baczyn-
ski, 2001, Proposition 6.11), which in general is not
equal toM (even in the linear deterministic case, see
(Molinari, 1977, Theorem 8)).

5. EXAMPLE

In this section we present an illustrative example em-
ploying a IMJLS with finite Markov state space. This
class of systems is simpler to deal with and still ex-
hibits the desired properties in the examples.

Example 1. (The minimal solution of the ICARE pro-
vides the synthesis of the optimal control)Consider
the systemΦ with

A1 =
[
1 1/2
0 1

]
; A2 =

[
1 1/4
0 2

]
; Λ =

[−1 1
5 −5

]
;

B1 =
[
1/2
2

]
; B2 =

[
3/2
2

]
;

Q1 = Q2 =
[
0 0
0 1/4

]
; R1 = R2 = 1.

(13)
Next, in the quest for the optimal control, we consider
the Riccati differential equations in (7); one can check
that their (unique) solution is of the form

PT
i (t) =

[
0 0
0 pT

i (t)

]
, i = 1,2,

and (7) leads to the set of differential equations

ṗT
1 (t) =−pT

1 (t)− pT
2 (t)+4(pT

1 (t))2− 1
4
,

ṗT
2 (t) =−5pT

1 (t)+ pT
2 (t)+4(pT

2 (t))2− 1
4
,

pT
1 (T) = 0, pT

2 (T) = 0.

Now one can solve the above equations forT → ∞
or equivalently, check that they have a unique positive
stationary solutionp1 = 0.6580≥ 0, p2 = 0.8240≥ 0,
thus obtaininglimT→∞ PT(0) = M where

M1 =
[
0 0
0 0.6580

]
; M2 =

[
0 0
0 0.8240

]
. (14)

Theorem 1 provides that

uopt(t) =

{
[0 −1.3161]x(t), θ(t) = 1,

[0 −1.6481]x(t), θ(t) = 2;

W(x, i) = x′Mix.

On the other hand, it is presented in (Costa and do
Val, n.d.) a method for solving the ICARE, which
reaches the minimal solution if and only if it exists.
Employing the method, one can check thatM is indeed
the minimal solution to the ICARE, thus verifying the
result of Lemma 4 and Theorem 3.

It is interesting to mention that the ICARE have mul-
tiple solutions in this example; e.g., employing the
method presented in (Costaet al., 1999) we find that

X1 =
[

53.35 −8.977
−8.977 2.685

]
; X2 =

[
22.73 −10.00
−10.00 6.820

]

is a (stabilizing) solution to the ICARE. Notice that
X > M, in accordance with Theorem 3.

6. CONCLUSION

In this paper we examine the GJLQ problem, a linear
quadratic problem involving IMJLS that does not re-
quire stabilizability of solutions in any sense, and its
relationship with the associated Riccati equations.



In connection to the GJLQ problem, we assume that a
solution exists when the optimal cost is bounded (i.e.,
C1 holds), a condition that can be relaxed to finiteness
of the cost in the scenario of IMJLS with finite Markov
state space. An important feature is that condition
C1 is weaker than the stabilizability condition that
usually serves as a sufficient condition for existence
of solutions to the ICARE, see Remark 2.

Assuming that C1 holds, the paper shows that the
solution to the related Riccati differential equations (7)
converges to a certainM ∈Hn0

1 satisfying the ICARE,
as in (8). The paper also shows thatM synthesizes the
optimal control, see Theorem 1.

As regards to the ICARE, in Theorem 3 we clarify
that if X is the minimal solution to the ICARE, thenX
provides the optimal, stationary, linear state feedback
control, and the optimal cost, as follows:

uopt(t) =−R−1
θ(t)B

′
θ(t)Xθ(t)x(t)

W(x, i) = x′Xix,

and we show in Lemma 4 thatX is identical to the limit
M. We also show that the ICARE have a nonempty set
of solutions if and only if C1 holds, see Theorem 2, in
a generalization of previous results.

The results obtained in the paper parallel exist-
ing results for linear deterministic systems, see e.g.
(Molinari, 1977) and (Kucera, 1972), thus strengthen-
ing the relations among the theory of IMJLS and that
of linear deterministic systems.
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