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Abstract: Two problems of motion planning for controlled systems which are
required to attain a given target set under coordinated constraints are formulated
and solved using dynamic optimization techniques. Constraint coordination arises
when the state of each system is mapped onto state constraints for other systems.
These problems are formulated in terms of backward reach sets which are the
sub-zero level sets of appropriate value functions for non-standard cost functions.
The value functions are the solutions of Hamilton-Jacobi-Bellman type PDEs.
For linear dynamics and ellipsoidal constraints the value functions are calculated
through duality techniques from convex analysis. Copyright c©2005 IFAC.
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1. INTRODUCTION

The problem of motion planning and coordina-
tion for multiple systems has received significant
attention in the literature. A significant body of
this work deals with the problem of formation
planning and control (Wang and Hadaegh, 1996;
Spry, 2002; Tabuada et al., 2001). However, there
are requirements for motion planning and con-
trol other than keeping a formation (de Sousa et
al., 2002; de Sousa and Sengupta, 2001). Some
of these requirements are more appropriately de-
scribed by coordinated state constraints. Con-
straint coordination arises when the state of each
system is mapped onto state-constraints for the
other systems.

Here we address the problem of planning the
motions of multiple systems to reach a certain
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number of targets under coordinated state con-
straints. The state constraints are modelled as set-
valued maps mapping the state of each system
onto constraints for the other systems. There is
one target set for each system. The problem is
solvable when the target sets are reached at some
time θ within some prescribed time interval T .
In this paper we address two versions of this
problem: 1) the motion of one system is known in
advance; 2) the motions of all systems are planned
to take advantage of the coordinated constraints.
We address these problems using backward reach
set computation and dynamic optimization tech-
niques (Kurzhanskii and Varaiya, 2001; Kurzhan-
skii and Varaiya, 2000). We do this for two co-
ordinated systems. The solution methodology is
directly applicable to a larger number of systems.

Dynamic optimization techniques are used in an
efficient algorithm for globally optimal trajecto-
ries for systems given by ẋ = u(t), ‖u‖ ≤ 1
subject to simple state constraints and a travelling



cost that depends only on the state (Tsitsiklis,
1995). Ordered Upwind Methods have been used
to solve Hamilton-Jacobi-Bellman-type equations
describing path planning problems for systems
modelled by an hybrid automaton with switch-
ing costs among different dynamics (Sethian and
Vladimirsky, 2002). Techniques from optimal con-
trol and game theory are used in (Lygeros et
al., 1995; Tomlin et al., 2000) to design controllers
for safety specifications in hybrid systems.

The paper is organized as follows. In section 2
we introduce the mathematical preliminaries. In
section 3 we state the problems under consider-
ation. In section 4 we use dynamic optimization
techniques to characterize the solution to these
problems and for controller synthesis. In section
5 we find the solution for linear systems using
duality techniques from non-linear analysis. In
section 6 we draw the conclusions.

2. PRELIMINARIES

Consider the controlled motions of a dynamic
system evolving in Rn described as:

ẋ = f(t, x, u), u(t) ∈ P (t) ⊂ Rm (1)

with the standard conditions for uniqueness and
prolongability of the solutions for t ≥ t0 (see for
example (Arnold, 1995)).

Definition 1. The backward reach set at time
τ relative to target set Xf and time tf ≥ τ ,
W [τ, tf ,Xf ], is the set of points W [τ, tf ,Xf ] =⋃ {

x[τ ]
∣∣u(s) ∈ P (s), s ∈ [τ, tf ), x[tf ] ∈ Xf

}

where x[τ ] is state of the system at time τ when
driven by control u(t).

The definition of backward reach set for the case
where the target set Xf can be reached within
some time interval T = [tα, tβ ] with tα ≥ t0
follows.

Definition 2. The backward reach set at time τ ≤
tα, W [τ, tα, tβ ,Xf ], is the set of points x ∈ Rn

such that there exists a control u(t) that drives
the trajectory of the system x[t] = x(t, τ, x) from
state (τ, x) to the target set Xf at some time
θ ∈ [tα, tβ ].

The relation between dynamic optimization and
reachability was first observed in (Leitmann,
1982). See also (Varaiya, 1998) for a description of
reach set computation using optimal control. The
key observation is that the reach set is the level set
of an appropriate value function (Kurzhanskii and
Varaiya, 2002). To illustrate this point consider
the following value function:

V (τ, x) = min
u(.)

{d2(x(tf ),Xf )|x(τ) = x}

V (tf , x) = d2(x,Xf ) (2)

where u(.) is an admissible control function de-
fined for [τ, tf ] and d(x(tf ),Xf ) is the Euclidean
distance between the state of the system at time
tf and target set Xf for a trajectory starting at
(τ, x). Obviously, x belongs to the backward reach
set if this distance is zero. But this also means that
the backward reach set is the zero level set of the
value function V :

W [τ, tf ,Xf ] = {x|V (τ, x) ≤ 0} (3)

If the value function satisfies the principle of op-
timality then it can be determined from the solu-
tion of the generalized Hamilton-Jacobi-Bellman
(HJB) PDE associated with it. This is the case
for V in equation (2). The corresponding HJB
equation is:

Vt(t, x) + max
u∈P (t)

〈Vx(t, x) · f(t, x, u)〉 = 0

V (tf , x) = d2(x,Xf ) (4)

Definition 3. The ellipsoid E(a,Q) with center a
and shape matrix Q = Q′ > 0 is the set of points:

E(a,Q) = {x : (x− a, Q−1(x− a)) ≤ 1} (5)

Its support function is ρ(l|E(a,Q)) = max{(l, x)|x ∈
E(a,Q)} = (l, p) + (l, P l)1/2 (Rockafellar and
Wets, 1998).

3. PROBLEM FORMULATION

Consider the motions of two controlled systems
under the assumptions from section 2 for t ≥ t0
and given by

ẋ1(t) = f1(t, x1, u1), u1(t) ∈ P1(t) (6)

ẋ2(t) = f2(t, x2, u2), u2(t) ∈ P2(t) (7)

where P1(t), P2(t) ∈ Compm – the variety of
compact sets in Rm. Moreover,

x1(t0) ∈ X1, x2(t0) ∈ X2 (8)

Let M1,M2 ∈ Compn be convex target sets for
the motions of system (i = 1, 2).

Denote u(.) = col{u1(.), u2(.)}, x = col{x1, x2}
and f(t, x, u) = col{f1(t, x1, u1), f2(t, x2, u2)},
and M = M1×M2. In what follows we will refer
both to each system (i = 1, 2) separately, and to
the composed system whose state x is driven by
control u(.).

Consider the time interval T = [tα, tβ ] with tα ≥
t0. Now consider that the motions of the two



systems (i = 1, 2) are coupled through the follow-
ing state constraints (convex and complementary-
convex as in (Kurzhanskii et al., 2004)):

x1(t) ∈ F2(x2(t)), x2(t) ∈ F1(x1(t)) (9)

x1(t) /∈ G2(x2(t)), x2(t) /∈ G1(x1(t)) (10)

where F1, F2, G1 and G2 are continuous convex
set-valued maps with values in Compn with non-
empty interior. G1 and G2 are avoidance sets
which represent safety regions to prevent collisions
between the motions of the two systems. F1 and
F2 are containment sets since the motions of x2

and x1 are restricted to stay inside F1 and F2

respectively.

Problem 1. (Motion planning). Find the set of all
initial conditions (x1, x2) ∈ X1 × X2 such that
there exist controls u1(t), u2(t) which starting at
time t0 steer the trajectories of both systems to
reach M1 × M2 at some time θ ∈ T under
constraints (9, 10).

The following assumptions ensure that: 1) the
problem is well-posed; 2) at most two constraints
are active at a time; and 3) the problem has non-
empty solution sets.

Assumption 1. ∀x ∈ Rn : Gi(x) ⊂ Fi(x), i = 1, 2.

Assumption 2. ∀x1, x2 ∈ Rn : ∃y ∈ Rn, G1(x1) ∩
G2(x2) = y we have G1(x1)∪G2(x2) ⊂ Fi(xi), i =
1, 2.

Assumption 3. ∃(x1, x2) ∈ M1 × M2 : x1 ∈
F2(x2)∧x2 ∈ F1(x1)∧x1 /∈ G2(x2)∧x2 /∈ G1(x1)

The solution to this problem is given in two steps.

Step 1 Find the backward reach set relative to
target set M1 ×M2 and time interval T under
state constraints given by equations (9) and (10).
This is the reach-evasion set (Tomlin et al., 2000).
Next we consider two versions of this problem.

Problem 2. [Given feasible motion xf
2 ] Calculate

the backward reach set W g
1 [τ, tα, tβ ,M1] under

constraints (9,10) when a feasible motion xf
2 (.) is

known in advance.

A feasible motion of xf
2 (.) is a trajectory xf

2 [t] =
xf

2 (t, τ, x2), x
f
2 (t0) ∈ X2 defined on [t0, tβ ] such

that xf
2 (t) ∈M2 for some t ∈ [tα, tβ ].

Problem 3. [Coordinated controls] Calculate the
backward reach set W c[τ, tα, tβ ,M1×M2] under
constraints (9,10) and coordinated controls.

A pair of controls (u1, u2) is said to be coordi-
nated when both controls are responsible for both
constraints.

Step 2 The solutions to the motion planning
problem (1) for the two versions of the backward
reach set problem (2, 3) are given respectively by
the following sets:

Sa
1 (t0) = W g

1 [t0, tα, tβ ,M1] ∩ X1

Sc(t0) = W c[t0, tα, tβ ,M1 ×M2] ∩ X1 ×X2

4. DYNAMIC PROGRAMMING APPROACH

We follow the approach described in (Kurzhanskii
and Varaiya, 2004) to calculate the solutions to
problems 2 and 3.

4.1 Value functions

First we consider problem (2). Let a feasible tra-
jectory xf

2 [t] = xf
2 (t, τ, x2) satisfying assumption 3

be given. Let Tg = [tαg , tβg ], where tαg , tβg are the
first entry and first exit times of this trajectory in
M2. From assumption (3) and the fact that xf

2 [t]
is a feasible trajectory we conclude that S = T ∩
Tg 6= ∅.
Let:

ϕ1
0(x1) = d2(x1,M1)

ϕ2
0(x2) = d2(x2,M2)

ϕ1(t, x1, x2) = d2(x1, F2(x2))

ϕ2(t, x1, x2) = d2(x2, F1(x1))

ϕ3(t, x1, x2) = −d2(x1, G2(x2))

ϕ4(t, x1, x2) = −d2(x2, G1(x1)) (11)

The continuity of functions ϕ0
1, ϕ

0
2 and ϕi(i =

1, . . . , 4) results from the continuity and convexity
of the set-valued maps G1, G2, F1 and F2, the
convexity of both M1 and M2, and the fact that
d is the Euclidean distance function.

Corresponding to this problem we introduce the
value function:

V g(τ, x1, S) = min
u1(.)

min
tf∈S

{
max

{
ϕ1

0(x1(tf )),

{max
t

φ1(t, x1(t))|t ∈ [τ, tf ]},
{max

t
φ2(t, x1(t))|t ∈ [τ, tf ]},

{max
t

φ3(t, x1(t))|t ∈ [τ, tf ]},

{max
t

φ4(t, x1(t))|t ∈ [τ, tf ]}
}

|x1(τ) = x1

}
(12)



where

φ1(t, x1) = ϕ1(t, x1, x
f
2 (t))

φ2(t, x1) = ϕ2(t, x1, x
f
2 (t))

φ3(t, x1) = ϕ3(t, x1, x
f
2 (t))

φ4(t, x1) = ϕ4(t, x1, x
f
2 (t)) (13)

The functions φi, (i = 1, . . . , 4) are continuous
since xf

2 (t) is continuous in t.

Lemma 1. The following relation is true:

W a
1 [τ, tαg

, tβg
,M1] = {x1 : V g(τ, x1, S) ≤ 0}

Proceeding similarly for problem (3)

V c(τ, x, T ) = min
u(.)

min
tf∈T

{
max

{
ϕ1

0(x1(tf )),

ϕ2
0(x2(tf ))

{max
t

ϕ1(x1(t), x2(t))|t ∈ [τ, tf ]},
{max

t
ϕ2(x1(t), x2(t))|t ∈ [τ, tf ]},

{max
t

ϕ3(x1(t), x2(t))|t ∈ [τ, tf ]},

{max
t

ϕ4(x1(t), x2(t))|t ∈ [τ, tf ]}
}

|x1(τ) = x1, x2(τ) = x2

}
(14)

Lemma 2. The following relation is true:

W c[τ, tα, tβ ,M] = {x : V c(τ, x, T ) ≤ 0}

4.2 Solution approach

Here, we consider the following assumption.

Assumption 4. The functions V c, V g, ϕ1
0, ϕ2

0,
ϕi, (i = 1, . . . , 4), and φi, (i = 1, . . . , 3) are dif-
ferentiable.

Next we describe how to calculate V c(τ, x1, x2, T )
(the calculation of V g(τ, x1, S) is identical).

First we consider the case where tf = tα = tβ and
denote V c(τ, x, T ) = V c(τ, x, tf ) = V c(τ, x) =
V c(τ, x|V c(tf , .)) where

V c(tf , x1, x2) = max{ϕ1
0(x1), ϕ2

0(x2),

ϕ1(x1, x2), ϕ2(x1, x2), ϕ3(x1, x2),

ϕ4(x1, x2)} (15)

The following lemma states the Principle of Opti-
mality for this problem.

Lemma 3. V c(τ, x) satisfies a semi-group prop-
erty, namely:

V c(τ, x|V c(tf , .)) =

V c
(
τ, x|V c

(
t, .|V c(tf , .)

))
, τ ≤ t ≤ tf (16)

The proof of the lemma is based on a standard
technique from (Fleming and Soner, 1993). Basi-
cally, this means that the value function inherits
the semi-group property from the reach set. The
infinitesimal form of the Principle of Optimal-
ity yields a generalized Hamilton-Jacobi-Bellman
PDE for V c(τ, x).

Observe that:

V c(τ, x1, x2|V c(tf , .)) ≤ ϕ2
0(x2),

V c(τ, x1, x2|V c(tf , .)) ≤ ϕ1
0(x1),

V c(τ, x|V c(tf , .)) ≤ ϕi(x), i = 1, . . . , 4 (17)

Let:

H(t, x, V c, u) = V c
t + (V c

x (t, x), f(t, x, u)) (18)

Following (Kurzhanskii et al., 2004) we conclude
that the HJB equation for V c(τ, x1, x2) is
Case 1) all the inequalities in equation (17) are
strict:

V c
t + min

u
〈V c

x (t, x), f(t, x, u)〉 = 0 (19)

Case 2) assume there is only one equality relation
in equation (17), for example V c(τ, x) = ϕi(τ, x).
Consider (x0(t), u0(t)) to be an optimal solution
of problem (3) that goes through point x at time
t (under the usual assumptions these exist). Then

max{H(t, x0(t), V c, u),H(t, x0(t), ϕi, u)} ≥
H(t, x0(t), V c, u0(t)) =

H(t, x0(t), ϕi, u
0(t)) = 0(20)

Now we turn to V c(τ, x, T ).

Lemma 4. The following relation is true:

V c(τ, x, T ) = min
tf∈T

V c(τ, x, tf )

In general value functions are not differentiable
and assumption (4) does not hold. However,
the above derivations are still valid if we use
some generalized concept of derivative. In this
case, the solutions to the HJB equation have
to treated in a generalized (“viscosity” or “min-
max”) sense (Bardi and Capuzzo-Dolcetta, 1997;
Fleming and Soner, 1993; Subbotin, 1995; Li-
ons, 1992; G.Crandall et al., 1984).

4.3 Controller synthesis

The motion planning problem (1) under coordi-
nated controls (given feasible trajectory xf

2 ) is
solvable if Sc(t0) 6= ∅ (Sa

1 (t0) 6= ∅).



Let t0 ∈ R be such that the problem (1) under co-
ordinated controls is solvable. Consider (x0

1, x
0
2) ∈

Sc(t0) and let θ = argmintf∈T V c(t0, x0
1, x

0
2, tf ).

Pick the value function V c(t0, x0
1, x

0
2, θ). Starting

at time t0 the control strategy which solves prob-
lem 1 under coordinated controls has a feedback
form u(t, x1, x2) ∈ U(t, x1, x2), where the feasible
controls U(t, x1, x2) are the minimizers in the HJB
equation (19, 20) for V c(., ., ., θ). The same type of
calculations yield the control strategy for problem
1 under a given feasible trajectory xf

2 .

It may happen that the feedback law u(t, x1, x2) is
discontinuous in the state. This requires another
notion of solution for differential equations (6, 7).
One possible approach is to define the solution as
a “constructive” motion introduced in (Krasovskii
and Subbotin, 1988).

5. LINEAR SYSTEMS

The solution approach described above involves
solving a HJB equation for the value functions V g

and V c. This is not a trivial matter for non-linear
systems and general constraints. However, for sys-
tems with linear structure and complementary
convex constraints the value function can be found
through techniques of convex analysis and mini-
max theory (Gusev and Kurzhanskii, 1971a; Gu-
sev and Kurzhanskii, 1971b). We illustrate these
techniques to find the value function for problem
2 with linear structure and convex and comple-
mentary ellipsoidal convex constraints.

The equations of motion are

ẋ1(t) = A(t)x1 + B(t)u1, u1(t) ∈ P1(t) (21)

where A(t) has continuous coefficients, P1(t) =
E(0, P1(t)), P1 is continuous in t and P1 > 0. It
is assumed that the system is completely control-
lable.

The ellipsoidal and the complementary ellipsoidal
convex constraints are given by the set valued-
maps F2 and G2 which map points to ellipsoids
in Compn with non-empty interior. For example
x1 ∈ F2(x

f
2 ) is given as ((x1 − xf

2 ), F e
2 (x1 −

xf
2 )) ≤ 1). The target sets are also non-degenerate

ellipsoids (M1 > 0,M2 > 0) M1 = E(m1,M1),
and M2 = E(m2,M2).

In order to calculate the backward reach set
W g

1 [t0, tα, tβ ,M1] through V g(τ, x1, S) we need to
consider a constraint qualification from (Kurzhanskii
and Varaiya, 2004):

Assumption 5. There exists a control u1(t) ∈
P1, t ∈ [t0, tβg ], a point x0

1 ∈ X1, and a num-
ber ε > 0 such that the trajectory x1[t] =

x1(t, t0, x0
1|u1(.)) generated by u1(t) produces a

tube

x1(t, t0, x0
1) + εBn(0) ⊆ F2(x

f
2 (t)), t ∈ [t0, tβg ]

where Bn is the unit ball in Rn.

As in (Gusev and Kurzhanskii, 1971a) we find a
solvability condition for V g(τ, x1, tf ) of the system
of inequalities

(x1[t]− xf
2 [t]), F e

2 (t)(x1[t]− xf
2 [t]) ≤ µ2

(x1[tf ]−m1),M1(tf )(x1[tf ]−m1) ≤ µ2 (22)

and find the smallest µ that ensures solvability.

Furthermore, we consider that assumption 3
holds.

Now let s[t] be a row-vector solution to the adjoint
equation

ds = −sAdt− q′(t)Λ(t), s(tf ) = l′ (23)

where q(t) is continuous and Λ is nondecreasing
of finite variation, then

Theorem 1. V g(τ, x1, tf ) is given by the formula

V g(τ, x1, tf ) = max
q(.)

max
Λ(.)

max
l
{(s[τ ], x1) +

∫ tf

τ

(s[t]B(t)P1(t)B′(t)s′[t])1/2dt} = µ0(τ, x1)(24)

where the maximums are taken over all functions
(q(t), N−1q(t)) ≤ 1, t ∈ [τ, tf ], N = F e

2 and all
elements (l, M−1

1 l1/2) +
∫ tf

τ
dΛ(t) ≤ 1.

From this theorem we obtain as a corollary that
the backward reach set is convex and compact.

6. CONCLUSIONS

We have described motion planning problems un-
der coordinated constraints and used dynamic
programming techniques to characterize the so-
lution and to synthesize controllers. The solution
method involves solving a HJB equation. This is
not a trivial matter. However, for systems with
linear structure and ellipsoidal constraints we can
use the techniques from (Kurzhanskii and Va-
lyi, 1997) to obtain numerical solutions to the
HJB equation. We have not yet explored the ge-
ometry of coordinated constraints so as to obtain
a better characterization of the solution properties
which could lead to more efficient solution meth-
ods.
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