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Abstract: In this work, the problem of robust fault detection in discrete
time uncertain linear systems is studied. The robustness is analyzed using
the characterization of two types of perturbation signals: energy signals and
bounded power signals. For these two types of signals, H2/H∞ mixed performance
approaches are used for fault detection filter design. The robust filter synthesis is
obtained generating a convex optimization problem, whose numeric solution is
reached by means of linear matrix inequalities (LMI). The approach is a simple
procedure for the design of robust fault detection filter. Copyright c©2005 IFAC
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1. INTRODUCTION

A fundamental issue in a fault supervision, de-
tection and diagnostic system is the fault Detec-
tion and isolation (FDI) filter, which should be
designed for operating under adverse conditions
due to the presence of external unknown signals,
uncertainties and to diverse operation conditions.
Such a filter should be able to produce residual
signals that allow: 1) To determinate the fault
presence under adverse conditions (Robust detec-
tion). 2) To determinate the fault origin (Robust
separation).

Due to the adverse conditions (perturbations,
uncertainties), the robust filter performance index
is defined from a robustness measure from the
sensitivity to faults sensitivity to perturbations.
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In this direction, the sensitivity measure of a filter
FDI can be characterized as follows:

S2 =
||Hezν ||2
||Hezω||2 ; o S∞ =

||Hezν ||∞
||Hezω||∞ ;

where H− is the transfer function, νi are the
faults, ω the disturbances and ez the residual
signal. In this way, the robust filters design should
offer an excellent faults sensitivity and, if it is
possible, the disturbances rejection (Edelmayer et
al., 1994).

For this study, let consider the following struc-
tured uncertainties diagnosis model:

x(k + 1) = (A + ∆A(k))x(k) + B1ω(k)+
(B2 + ∆B(k))u(k) + F1ν(k),

z(k) = C1x(k) + D11ω(k) + F3ν(k),
y(k) = (C2 + ∆C(k))x(k) + D21ω(k) + F2ν(k),

(1)



where x ∈ <n are the states, z ∈ <m is a signal to
measure the performance and is a combination of
the available measurements, y ∈ <p the measured
output signals; ω ∈ L2 is the disturbance signal
and ν is the unknown fault vector. Matrices A,
B1, C2, D11 y D21 have appropriate dimensions.
Uncertainties are characterized using

∆A(k) = G1E(k)H1, ∆B(k) = G1E(k)H2,
∆C(k) = G2E(k)H1,

where G1, G2, H1, H2, are known constant ma-
trices with appropriate dimensions. E(k) is a
bounded unknown scalar function.

F1, F2, F3 are the fault distribution matrices,
which are assumed as known.

F1ν(k) represents the actuators or components
faults and F2ν(k), F3ν(k) are the sensors faults.
It is assumed that the pair (C2, A) is detectable.

The robust fault detection problem consist in
generating a residual signal ez(k) that satisfies:

z(ez(k)) ≤ Th si ν(k) = 0,
z(ez(k)) > Th si ν(k) 6= 0,

(2)

where z(ez(k)) is a residual size measurement, for
example a norm, and Th is a threshold value.

Thus, using the diagnosis model it is possible
to construct a filter for the dynamic system as
follows:

Σ2





x̂(k + 1) = Ax̂(k) + B2u(k) + Key(k),
ẑ(k) = C1x̂(k),
ŷ(k) = C2x̂(k),

(3)
where K is the gain to be selected and ey(k) =
y(k) − ŷ(k). If it is defined ex(k) = x(k) − x̂(k)
and the residual signal ez(k) = z(k)− ẑ(k), then

ex(k + 1) = (A−KC2)ex(k) + B1ω̃(k)+
B2ω(k) + (F1 −KF2)ν(k),

ez(k) = C1ex(k) + D11ω(k) + F3ν(k),
(4)

where ω̃(k) =
(

x(k)
u(k)

)
, the matrix B1 = (∆A(k)−

K∆C2(k) ∆B(k)) and the matrix B2 = B1 −
KD21.

For fault detection, it is necessary to design K in
order to find that the residual signal sensibility
ez due to disturbance is small, and large for fault
presence. This is, given the diagnostic system (1)
then the filter Σ2 allows the fault detection if:

(1) The dynamic system (4) is asymptotically
stable.

(2) The gain relation fault-noise S = γν/γω̄ is
large, where ω̄ = ω, ω̃ and γν > 0, γω̄ > 0.

In summary, the main problem of the filtering
sensitivity is to find a trade-off between the mini-
mization of the magnitude of the transfer function
from unknown inputs to the residual from the one
hand and maximization of the magnitude of the

transfer function from the failure modes to the
residual from the other in an attempt to achieve a
desired minimum amplification rate of a particular
failure mode in the filter residual.

Some results in the design of robust detection fil-
ters has been presented for continuous systems: in
(Edelmayer et al., 1994), (Chen and Patton, 1999)
and (Patton and Hou, 1997) there are consid-
ered actuators faults and the solutions are pre-
sented in the context of H∞. In (Rı́os-Boĺıvar and
Garćıa, 2001) it is also approached the problem
from the perspective of the norm H∞ but in this
case the problem of fault detection is transformed
as an optimal control problem and capabilities are
given for the robust fault separation. In (Chen et
al., 1996) is presented the design of filters based on
unknown input observers, which presents strong
design conditions. (Zhong et al., 2003) presents
a method based on joining H∞ models, whose
solution is based on LMI optimization. In a sim-
ilar way, (Wang et al., 2003) proposes a robust
filter by means of an iterative method of LMI
optimization, under a strong condition in the
structure of the diagnosis model. (Khosrowjerdi
et al., 2003; Khosrowjerdi et al., 2004) considers
the simultaneous design of filter and control un-
der a formulation of H2/H∞ mixed optimization.
General characteristics of these methods are the
search of an appropriate detection, by means of
the fault sensibility improvement, having small
consideration in the fault separation problem,
which can be seen as a problem of multiple filtrate.

For designing robust filters in discrete time sys-
tems, (Rı́os-Boĺıvar et al., 1999) considers the
disturbance rejection by means of a generalized
observer. This method is restricted to some con-
ditions concerning the disturbance distribution
regarding the faults in order to guarantee the
separability. (Nobrega et al., 2000) considers the
design of LMI-based filters. There are given syn-
thesis conditions based on joining range restric-
tions for certain matrices; also, the estimation
error is formulated based directly on the faults,
and this make harder the implementation. (Wang
and Lam, 2002) presents a method for the case of
structured disturbances. This method is presented
as a gradient-based non restricted optimization
problem. A certain sensibility level is reached.
(Zhong et al., 2001) proposes an approach that
consists of two steps: first, a stable weighting
function matrix is selected in order to improve the
fault sensitivity. Second, the formulation of the
fault detection filter design as a model-matching
problem, whole solution is obtained by LMI opti-
mization. In (Rı́os-Boĺıvar and Garcia, 2004), it
is presented a design method by means of the
transformation of the robust detection problem
being an optimal robust control problem in H2-



H∞. Under certain conditions the robust faults
detection and separation is reached.

In this paper, the robust filters synthesis by means
of considering mixed performance criteriaH2/H∞
is proposed. The problem arises when it is consid-
ered the uncertainties like bounded power distur-
bance signals, while the noise is considered as well-
known fixed spectral density signals. These two
types of signals induce to use mixed performance
indexes for obtaining the dynamic filter gain K.
The solution of the synthesis problem for the filter
can be seen as a convex LMI optimization.

2. ROBUST FDI PROBLEM

As can be seen in (4), the residual signal ez(k)
depends on two types of disturbance signals: ω(k)
and ω̃(k). The signal ω(k) is considered as a white
noise. Due the system (1) is assumed stable then,
‖ω̃(k)‖ ≤ ‖x(k)‖ + ‖u(k)‖, if the input u(k) is
bounded. Since the uncertainties are bounded,
(E(k) is delimited), then the error dynamics
will be influenced by bounded disturbances. This
makes us consider, for fault detection effects, that
the diagnosis model (1) can be influenced by two
types of disturbances, as follows:

x(k + 1) = Ax(k) + B̃1ω̃(k) + B1ω(k)
+B2u(k) + F1ν(k),

z(k) = C1x(k) + D11ω(k) + F3ν(k),
y(k) = C2x(k) + D̃21ω̃(k)

+D21ω(k) + F2ν(k),

(5)

where B̃1 = (∆A(k) ∆B(k)) and D̃21 =
(∆C(k) 0), which characterizes the bounded
power disturbance signal.

Considering the detection filter Σ2, the error dy-
namics corresponds to the system (4). The pro-
posed formulation is the design of a robust fault
detection filter in a H2/H∞ mixed framework.
The robust fault detection is reached if (4) is
asymptotically stable and if a fault high sensibility
is maintained, while the sensitivity to the distur-
bances is minimized. In this context, the following
definitions can be established.

Definition 2.1. Let us consider the diagnosis model
(5). The fault Fi is said detectable if there exist a
filter such that the generated residual signal ez(k)
satisfies z(ez(k)) > Th.

In the sensor faults particular case, the fault is
detectable if the fault distribution matrix belongs
to the system observable sub-space.

Definition 2.2. Let us consider the diagnosis model
(5). The fault Fi is said robustly detectable if there
exist a filter, minimizing the disturbance effect,

such that the generated residual signal ez(k) sat-
isfies z(ez(k)) > Th.

Besides belonging to the observable sub-space, the
fault distribution matrices and the disturbance
signal direction matrices should belong to differ-
ent sub-spaces. Thus, the minimizing the distur-
bance effect on the residual signal, the condition
that the size of the residual be bigger than the
threshold can be guaranteed.

2.1 Problem Formulation

In order to guarantee the robust fault detection
and diagnosis there should be designed K consid-
ering that: a) The dynamic system (4) is asymp-
totically stable. b) The gain relationship fault-
noise S = γν/γω̄ is large.

This problem can be postulate as a mixedH2/H∞
filtering problem which amounts to find a filter
gain which minimizes the L2 norm of the transfer
function from unknown inputs to the residual of
the filter subject to the H∞ norm of the transfer
function from failure modes to the filter error.

Based on the uncertainties models, seen as dis-
turbance signals, and of the external disturbances
nature, the detection filter synthesis problem can
be outlined as follows:

Problem: Given the diagnosis model (5), we want
to design K, for the filter Σ2, considering:

(1) The close loop system (4) should be asymp-
totically stable.

(2) The disturbance effect ω̃ and the ω effect over
the residual signal ez should be minimized in
any sense.

For guaranteeing an high fault sensibility, mini-
mizing the disturbance effect, then the separa-
bility condition presented in (Massoumnia, 1986)
should be applied to the distribution matrices of
those signals. Then, (ImB1

⋃
Im B̃1)

⋂
ImF1 = ∅

should be satisfied, which is a necessary condition
for guaranteeing fault detectability. Thus, min-
imizing the effects of the disturbance over the
residual signal, the gain relationship fault-noise S
will be large.

3. FILTER SYNTHESIS USING A MIXED
FRAMEWORK WITH H2/H∞

It will be presented the K design using the H2

andH∞ norms mixed, supported by the LMI tech-
nique. Let’s consider the dynamic system error (4)
using only the disturbance and residual signals.
So, the transfer matrices are defined as follows:



Hezω̃(z) =
[
A B1

C 0

]
, Hezω(z) =

[
A B2

C D

]
,

where

A = A−KC2, B1 = B̃1 −KD̃21,

B2 = B1 −KD21, C = C1, D = D11;

So, K should be designed in order to let ||Hezω̃||22 <
µ, µ > 0 and ||Hezω||2∞ < γ, γ > 0, as optimiza-
tion problem, this is

min
K

{||Hezω̃||22 : ||Hezω||2∞ < γ}

Next lemmas are well known results, which com-
pletely characterize the norms H2 and H∞ as
LMI restrictions (Scherer et al., 1997; Oliveira et
al., 1999).

Lemma 3.1. Inequality ||Hezω̃||22 < µ is satisfied
if and only if, there exist symmetrical matrices X,
W that make tr(W) < µ and



X XA XB1

(◦)T X 0
(◦)T (◦)T I


 > 0,

[
W C

(◦)T X

]
> 0, (6)

factible.

Lemma 3.2. Inequality ||Hezω||2∞ < γ is satisfied
if and only if there exists a symmetrical matrix X,
that make 



X XA XB2 0
(◦)T X 0 CT

(◦)T (◦)T I DT

(◦)T (◦)T (◦)T γI


 > 0, (7)

factible.

Using lemma 3.1 and Lemma 3.2 it can be estab-
lished the following result:

Proposition 3.1. Let consider the diagnosis model
(1), with the equivalent (5). Such a model admits
a filter Σ2 that ||Hezω̃||22 < µ and ||Hezω||2∞ < γ
if and only if, there exist n-order symmetrical
matrices X > 0 and W > 0; and matrix Y that
satisfy the following LMIs:




X XA−YC2 XB̃1 −YD̃21

(◦)T X 0
(◦)T (◦)T I


 > 0, (8)

[
W C1

(◦)T X

]
> 0, (9)

tr(W) < µ, (10)


X XA−YC2 XB1 −YD21 0
(◦)T X 0 CT

1

(◦)T (◦)T I DT
11

(◦)T (◦)T (◦)T γI


 > 0,

(11)

The filter gain is given by

K = X−1Y. (12)

Proof
This proof is based on the matricial inequalities
linearization procedures using variable substitu-
tion (Scherer et al., 1997; Oliveira et al., 2002).
Let X = X, W = W. Substituting the original
matrices in inequalities (6) and (7) it is obtained
non linear inequalities. Considering Y = XK the
linearization is obtained. ¥

Fault detection is guaranteed when the distur-
bance effects over the residual signal are decre-
mented. For that, there are obtained attenuation
levels µ and γ, which, added to the fault and
disturbance separability condition (Massoumnia,
1986), will be always possible to find thatz(ez(k)) >
Th if ν(k) 6= 0.

The presented procedure, let use mixed perfor-
mance criteria H2/H∞ according to disturbance
signals conditions in similar way to continuous
case (Khosrowjerdi et al., 2003), but using a less
conservative methodology. This represents a gen-
eralization for designing discrete time linear sys-
tems fault detection robust filters.

4. NUMERICAL EXAMPLE

Let consider the discrete model for a vertical
movement airplane, presented in (Wang and Lam,
2002):

A =

(
0.9813 0.0083 −0.0454 −0.2459
0.0117 0.5813 −0.3898 −1.6662
0.0457 0.1274 0.8230 0.4803
0.0117 0.0358 0.4433 1.1361

)
, B1 =

(
0.2 0
0 0.2

0.2 0
0 0.2

)
,

B2 =

(
0.2664 0.0365
1.7629 −3.2664
−2.3152 1.7209
−0.6083 0.4660

)
, C1 =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 1 1 1

)
,

D11 =

(
0 0.2
0 0
0 0.2
0 0

)
, C2 = C1, D21 = D11.

The uncertainties models are defined by

G1 =

(
0.25 0
0 0.25

0.25 0
0 0.25

)
, G2 =

(
0 0.25

0.25 0
0 0.25

0.25 0

)
, E(k) random.

H1 =

(
0.2 0 0 0.2
0 0.2 0.2 0

)
, H2 =

(
0.05 0
0 0.05

)
.

Fault distribution matrices correspond to

F1 = 2B2, F2 =

(
0 0
0 0

0.2 0
0.2 0.2

)

Using the LMIs numerical solutions, it can be
obtained the following filter gain:

K =




3.1584 −0.9593 −3.1511 0.9236
0.3798 1.3827 0.6178 −1.3740
0.7259 −0.8698 −0.7239 0.8654
−3.0967 0.5844 4.0860 −0.5269


 .



The attenuation level found corresponds to µ =
0.1213 and γ = 0.1825. Robust fault detection is
guaranteed considering that the fault attenuation
level corresponds to γν = 22.2353. Fig. 1 depicts a
comparative diagram showing the maximum sin-
gular values for the diverse transfer functions for
residual signal ez, disturbances ω, uncertainties ω̃,
and faults ν. It can be seen the effectiveness of the
presented method, because the fault detection is
always possible.
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Fig. 1. Maximum singular values Diagram.

Concerning the temporal response, Fig. 2 depicts
the diagnosis model measured output y(k). After
the setting time of the temporal dynamic, it was
produced a sinusoidal type fault k = 200s. As
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Fig. 2. System output y(k).

it can be seen in output y(k), it is not easy
to distinguish the fault presence accurately. The
disturbance and uncertainties presence make it
difficult.

On the other hand, considering the residual signal
ez(k), that is shown in Fig. 3, it can be established
a clear difference under the fault presence when
the fault patterns are shown.

0 50 100 150 200 250
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time k (s)

e z(k
)

Fig. 3. Residuals ez(k).

This simulation results can confirm the capabili-
ties of the proposed method. Robust fault detec-
tion for uncertain discrete-time systems can be
obtained using the proposed filter.

5. CONCLUSIONS

Considering the system uncertainties as bounded
disturbance signals, a method for designing robust
detection and isolation filters for discrete time
linear systems with both model uncertainty and
disturbances has been proposed. Two kind of sig-
nals, energy and bounded power, are used. The
filter synthesis is given using the norm criteri-
ons H2/H∞ mixed, expressed as LMI restrictions.
Thus, the filter gain is obtained solving an LMI-
based optimization problem. This guarantee an
attenuation level for disturbances and uncertain-
ties effects over the residual signal. The faults
residual sensitivities is guaranteed. This technique
is simpler than some known methods.
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