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Abstract: Linear matrix inequality conditions are given for the robust stability
of neutral systems with time-varying delays in the state vector. All the system
matrices are supposed to be time-invariant, belonging to a known polytope.
The robust stability is assured by means of a parameter-dependent Lyapunov-
Krasovskii functional, independently of the size of the time-varying delays. A
numerical example illustrates the results. Copyright c©IFAC 2005.
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1. INTRODUCTION

Time-delays occur very frequently in many dy-
namic systems and can be of crucial importance
for the system stability (see Dugard and Verri-
est (1997), Hale and Lunel (1993), Kolmanovskii
and Richard (1999), Malek-Zavarei and Jamshidi
(1987) and references therein). The analysis of sta-
bility becomes more complicated in the presence
of uncertain parameters, and many works have
been published during the last decades provid-
ing sufficient conditions for the robust stability
of time-delay systems. The Lyapunov-Krasovskii
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functionals are undoubtedly one of the main tools
to derive stability conditions for this kind of sys-
tems (Kolmanovskii et al., 1999), (Skorodinskii,
1990) and there have been efforts to characterize
the robust stability by means of linear matrix in-
equalities (LMIs), which can be solved in polyno-
mial time through interior point algorithms (Boyd
et al., 1994), (Gahinet et al., 1995). Since the
delay-dependent conditions for robust stability of
retarded systems are in general conservative or,
when more accurate, demand a high computation
level, it is of great interest to obtain less conserva-
tive LMI based delay-independent conditions for
uncertain retarded systems.



The main focus of this paper is on the robust
stability of neutral systems (i.e. systems whose
dynamics depends also on the time-derivative
of past states). Transmission lines or dynam-
ical processes including steam or water pipes
that can be described by linear hyperbolic dif-
ferential equations with mixed initial and deriva-
tive boundary conditions are examples of neu-
tral systems (Hale and Lunel, 1993), (Niculescu,
2001), (Bellen et al., 1999). Among several pa-
pers dealing with this class of systems, on may
cite Niculescu (2001) (both delay-dependent and
delay-independent conditions, time-invariant de-
lays and no uncertainty), Bin et al. (2003)
(delay-dependent conditions, time-invariant de-
lays and no uncertainty), Verriest (1999) (delay-
independent Riccati based conditions for time-
varying systems and time-varying delays), Xu
et al. (2003) (norm-bounded uncertain systems,
time-invariant delays), Bliman (2002) (delay-in-
dependent sufficient LMI conditions tending to
necessity as the complexity increases, precisely
known E matrix, polytopic uncertainties and
time-invariant delays), Fridman (2001) (no uncer-
tainty, introduces a descriptor system approach).
Other relevant results include Park (2003), Cao
and He (2004), Chen (2003), Park et al. (2004),
Chen (2004), Fu (2004), Park and Won (2000),
Park (2001), Han (2002), Han (2004), Ivǎnescu
et al. (2003). Most of these works consider only
time-invariant delays and, as a general rule, they
consider that the same delay affects both the de-
layed states and the time-derivative of the delayed
states.

To deal with the presence of uncertainty, the
quadratic stability approach (Barmish, 1985) is
used in most of cases. In the context of robust sta-
bility of uncertain linear systems, improved con-
ditions have been obtained through parameter-
dependent Lyapunov functions (de Oliveira et
al., 1999), (Leite and Peres, 2003), (Peaucelle et
al., 2000), (Ramos and Peres, 2001), (Ramos and
Peres, 2002). This paper extends these recent re-
sults to the robust stability analysis of uncertain
neutral systems with time-varying delays. On the
contrary of the majority of papers dealing with
this subject, different time-delays are considered
in the delayed states and in the time-derivative
of the delayed states. No model transformation
(which introduces new dynamics, as discussed in
Gu and Niculescu (2001)) is used and all the sys-
tem matrices are supposed to belong to a polytope
with known vertices. Sufficient LMI conditions are
given for the existence of a parameter dependent
Lyapunov-Krasovskii functional assuring the ro-
bust stability of the uncertain system irrespective
of the time-varying time-delays. Although pre-
sented for the case of single delays, the conditions
can easily be extended to the case of multiple

delays. The formulation presented encompasses
previous results from the literature, such as robust
stability of uncertain systems without delays or
robust stability of uncertain retarded systems as
special cases. A numerical example illustrates the
results.

1.1 Notation

The notation used in this paper is quite standard.
R

+ is the set of nonnegative real numbers. I

and 0 denote, respectively, the identity matrix
and the null matrix of appropriate dimensions.
M > 0 (< 0) means that matrix M is positive
(negative) definite. Cτ = C([−τ, 0], R

n) denotes
the Banach space of continuous vector functions
mapping the interval [−τ, 0] into R

n with the
topology of uniform convergence. Cv

τ is the set
defined by Cv

τ = {φ ∈ Cτ ; || φ ||c< v, v > 0}.
The symbol ? stands for symmetric blocks in the
LMIs.

2. PRELIMINARIES

Consider the following class of uncertain neutral
linear system

∂

∂t
D(xt) = A(α)x(t) + Aθ(α)x(t − θ(t))) (1)

D(xt) , x(t) − E(α)x(t − τ(t)) (2)

with the initial condition

x(t0 + ξ) = φ(ξ),∀ξ ∈ [−ς, 0], (t0, φ) ∈ R
+ × Cv

ς

(3)
ς , max{θ(t), τ(t))}, θ(t) ≥ 0, τ(t) ≥ 0, ∀t (4)

where x(t) ∈ R
n is the state and θ(t) ∈ R

+ and
τ(t) ∈ R

+ are time-varying delays. The time-
invariant system matrices E(α), A(α) and Aθ(α)
are not precisely known, but belong to a polytopic
domain P with known vertices Ej , Aj , Aθj (or
(E,A,Aθ)j) given by

P =
{

(E,A,Aθ)(α) ∈ R
n×3n :

(E,A,Aθ)(α) =

N
∑

j=1

αj(E,A,Aθ)j ;

N
∑

j=1

αj = 1 ; αj ≥ 0
}

(5)

Any matrix triple (E,A,Aθ)(α) inside P can be
written as a convex combination of the vertices
(E,A,Aθ)j of the uncertainty polytope in terms

of α, αj ≥ 0,
∑N

j=1 αj = 1.

This paper addresses the following problem:

Problem 1. Determine, if possible, conditions as-
suring that the uncertain neutral linear system
(1)-(5) is robustly stable independently from the
time-delay values θ(t) and τ(t).



Sufficient conditions for solving Problem 1 are
given in terms of LMIs in the sequel. A param-
eter dependent Lyapunov-Krasovskii functional is
used, providing delay-independent convex condi-
tions which are less conservative results than sim-
ilar results obtained with the quadratic approach
(constant matrices in the Lyapunov-Krasovskii
functional).

3. ROBUST DELAY-INDEPENDENT
STABILITY

First, a general matrix inequality condition (with
infinite dimension on α) is given. From this con-
dition, a convex one with finite number of LMIs
is obtained by choosing some matrix variables as
independent of the uncertain parameter α.

The following lemma, from stability theory of
Lyapunov, is used in the sequel.

Lemma 1. The uncertain neutral system (1)-(5)
is robustly stable independently from the time-
varying delays θ(t) and τ(t) if there exist sym-
metric positive definite matrices P (α) ∈ R

n×n,
S1(α) ∈ R

n×n and S2(α) ∈ R
n×n such that

V (α, x(t), θ(t), τ(t)) = D(xt)
′P (α)D(xt)

+

∫ t

t−θ(t)

x(σ)′S1(α)x(σ)dσ

+

∫ t

t−τ(t)

x(ε)′S2(α)x(ε)dε > 0 (6)

∀ (x(t)′, x(t − θ(t))′, x(t − τ(t)′)′ 6= 0 and

∂

∂t
V (α, x(t), θ(t), τ(t)) < 0 (7)

An important remark about Lemma 1 is that it
does not provide a method to obtain matrices
P (α), S1(α) and S2(α). Note also that no bounds
on the rate of variation of the time-delays are
imposed. In order to provide sufficient conditions
to Lemma 1, thus solving Problem 1, the following
bounds are assumed:

|θ̇(t)| ≤ θ̄ < 1 (8)

|τ̇(t)| ≤ τ̄ < 1 (9)

Define also the scalars

βθ̄ , (1 − θ̄) ; βτ̄ , (1 − τ̄) (10)

Theorem 1. The following equivalent conditions
guarantee the delay-independent robust stability
of the neutral system (1)-(5) with time-varying
delays with bounded variation rates given in (8)-
(9) and are sufficient to verify Lemma 1, thus
assuring a solution to Problem 1:

i) There exist symmetric positive definite matrices
P (α) ∈ R

n×n, S1(α) ∈ R
n×n, S2(α) ∈ R

n×n such
that

Θ(α) ,




Ψ P (α)Aθ(α) −A(α)′P (α)E(α)
? −βθ̄S1(α) −Aθ(α)′P (α)E(α)
? ? −βτ̄S2(α)



 < 0 (11)

with

Ψ = A(α)′P (α)+P (α)A(α)+S1(α)+S2(α) (12)

ii) There exist symmetric positive definite matri-
ces P (α) ∈ R

n×n, S1(α) ∈ R
n×n, S2(α) ∈ R

n×n

and matrices F1(α), F2(α), G1(α), G2(α), H1(α),
H2(α), M1(α), M2(α), N1(α) and N2(α) belong-
ing to R

n×n such that equation (13) holds.

Proof: The fact that i) is a sufficient condition to
solve Problem 1 follows directly from Lemma 1.
By evaluating the time-derivative of V (·), with
D(xt) given by (2), one gets χ(t)′Θ(α, t)χ(t) with
χ(t) ≡ [ x(t)′ x(t − θ(t))′ x(t − τ(t))′ ]′ and

Θ̃(α, t) ,




Ψ P (α)Aθ(α) −A(α)′P (α)E(α)
? −βθ̇S1(α) −Aθ(α)′P (α)E(α)
? ? −βτ̇S2(α)





where βθ̇ , (1 − θ̇(t)), βτ̇ , (1 − τ̇(t)) and
Ψ is given in (12). Now, using (8)-(9) and (11)
one has Θ̃(α, t) ≤ Θ(α) < 0 thus assuring the
conditions of Lemma 1. The fact that ii) ⇒
i) can be obtained by applying the congruence
transformation Θ(α) ≡ U ′Ξ(α)U with

U ,





A(α)′ I I 0 0

Aθ(α)′ 0 0 I 0

0 −E(α)′ 0 0 I





′

and the converse can be proved by using the
Finsler’s Lemma (see for instance de Oliveira and
Skelton (2001)).

The conditions presented in Theorem 1 do not
depend on τ(t) and θ(t), but only on their max-
imum rates of variation, respectively τ̄ and θ̄.
Moreover, Theorem 1 could be used to verify the
robust stability of a neutral system belonging to
any uncertainty domain parametrized on α, at
the price of testing all possible values of α. A
numerically efficient test with a finite number of
LMIs assuring the conditions of Lemma 1 can be
obtained by imposing the following structure on
matrices P (α), S1(α), S2(α)

P (α) =

N
∑

j=1

αjPj ; S1(α) =

N
∑

j=1

αjS1j ;

S2(α) =

N
∑

j=1

αjS2j ;

N
∑

j=1

αj = 1, αj ≥ 0 (14)



Ξ(α) ,



















F1(α) + F1(α) P (α) + F2(α) + G1(α)′ H1(α)′ − (F1(α)A(α) + F2(α))
? G2(α) + G2(α)′ H2(α)′ − (G1(α)A(α) + G2(α))

? ?
S1(α) + S2(α) − (H1(α)A(α)

+A(α)′H1(α)′ + H2(α) + H2(α)′)
? ? ?
? ? ?

M1(α)′ − F1(α)Aθ(α) N1(α)′ + F2(α)E(α)
M2(α)′ − G1(α)Aθ(α) N2(α)′ + G2(α)E(α)

−(H1(α)Aθ(α)
+A(α)′M1(α)′ + M2(α)′)

H2(α)E(α) − (A(α)′N1(α)′ + N2(α)′)

−βθ̄S1(α) + M1(α)Aθ(α)
+Aθ(α)′M1(α)′

M2(α)E(α) − Aθ(α)′N1(α)′

? −βτ̄S2(α) + N2(α)E(α) + E(α)′N2(α)′





















< 0 (13)

and by choosing F1(α) = F1, F2(α) = F2,
G1(α) = G1, G2(α) = G2, H1(α) = H1, H2(α) =
H2, M1(α) = M1, M2(α) = M2, N1(α) = N1 and
N2(α) = N2.

Theorem 2. If there exist symmetric positive def-
inite matrices Pj ∈ R

n×n, S1j ∈ R
n×n, S2j ∈

R
n×n, j = 1, . . . , N and matrices F1, F2, G1, G2,

H1, H2, M1, M2, N1 and N2 belonging to R
n×n

such that

Ξj ,



















F1 + F1 Pj + F2 + G′

1 H ′

1 − (F1Aj + F2)
? G2 + G′

2 H ′

2 − (G1Aj + G2)

? ?
S1j + S2j − (H1Aj

+A′

jH
′

1 + H2 + H ′

2)
? ? ?
? ? ?

M ′

1 − F1Aθj N ′

1 + F2Ej

M ′

2 − G1Aθj N ′

2 + G2Ej

−(H1Aθj

+A′

jM
′

1 + M ′

2)
H2Ej

−(A′

jN
′

1 + N ′

2)

−βθ̄S1j + M1Aθj

+A′

θjM
′

1
M2Ej − A′

θjN
′

1

?
−βτ̄S2j

+N2Ej + E′

jN
′

2





























< 0

j = 1, . . . , N (15)

then, Lemma 1 holds with P (α), S1(α) and S2(α)
given by (14) thus assuring a solution to Prob-
lem 1.

Proof: Clearly, P (α), S1(α) and S2(α) given by
(14) with Pj = P ′

j > 0, S1j = S′

1j > 0, S2j =
S′

2j > 0, j = 1, . . . , N are parameter dependent
positive definite matrices. Multiplying (15) by

αj , αj ≥ 0,
∑N

j=1 αj = 1 and summing up on
j = 1, . . . , N (13) is verified.

Robust stability conditions for special cases of
system (1)-(5) can be obtained directly from The-
orem 2 (as well as from Theorem 1). These delay-
independent robust stability conditions can be

obtained by changing the Lyapunov-Krasovskii
functional and applying appropriate congruence
transformations in the LMIs of (15).

For instance, consider E(α) ≡ 0 in (1), imply-
ing that the neutral characteristic of the system
is lost. The system is now a standard retarded
uncertain system given by

ẋ(t) = A(α)x(t) + Aθ(α)x(t − θ(t)) (16)

By fixing S2(α) ≡ 0 in the functional (6), a robust
stability condition for system (16) can be obtained
from (15) by using the congruence transformation

ΞEj = TEΞjT
′

E ; j = 1, . . . , N

with

TE =





I 0 0 0 0

0 I I 0 0

0 0 0 I 0





as presented in the following corollary.

Corollary 1. If there exist symmetric definite pos-
itive matrices S1j ∈ R

n×n and Pj ∈ R
n×n,

j = 1, . . . , N , matrices F ∈ R
n×n, G ∈ R

n×n,
M ∈ R

n×n such that

ΞEj ,





F + F ′ Pj + G′ − FAj

? S1j − GAj − A′

jG
′

? ?

M ′ − FAθj

−GAθj − A′

jM
′

−βθ̄S1j − MAθj − A′

θjM
′



 < 0

j = 1, . . . , N (17)

then, the uncertain linear retarded system (16)
with time-varying delay θ(t) subjected to (8)
is robustly stable independently from the time-
delay.

The variables of Corollary 1 are related to the
ones of Theorem 2 in the following way: F = F1;
G = G1 + H1 and M = M1 (P (α) and S1(α) are
given by (14) in both cases).

A second case to be investigated is the uncertain
neutral system (1) with Aθ(α) ≡ 0. The robust



delay-independent stability condition for this case
can be obtained from (15) through the congruence
transformation TAθ

ΞjT
′

Aθ
; j = 1, . . . , N with

TAθ
=









I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 0 0 0 I









Finally, consider system (1) without delay, that
is, E(α) ≡ Aθ(α) ≡ 0 yielding the uncertain
continuous-time system ẋ(t) = A(α)x(t). The
robust stability condition can be obtained by
imposing (without loss of generality) S1(α) ≡
S2(α) ≡ 0 in functional (6), resulting in the robust
stability condition for continuous-time uncertain
systems presented in Peaucelle et al. (2000). This
can be obtained from (15) by using the congruence
transformation TEAθ

ΞjT
′

EAθ
; j = 1, . . . , N with

TEAθ
=

[

0 I I 0 0

I 0 0 0 0

]

Similar transformations could be applied on con-
dition ii) of Theorem 1.

It is important to emphasize that all the re-
sults presented here encompass, as a special case,
the quadratic stability based conditions which
use constant matrices in the Lyapunov-Krasovskii
functional. Those conditions can be obtained by
choosing P (α) = Pj = P , S1(α) = S1j = S1

and S2(α) = S2j = S2. The numerical complexity
of the presented conditions are now given: The-
orem 2 and Corollary 1 involve KT2 = 3Nn(n +
1)/2+10n2 and KC1 = Nn(n+1)+3n2 scalar vari-
ables, respectively, and LT2 = 5n and LC1 = 3n
LMI rows, being solved in polynomial time by
specialized algorithms, as Gahinet et al. (1995),
with complexity proportional to K3L (other LMI
solvers may perform differently).

4. NUMERICAL EXAMPLE

Consider the uncertain neutral system with two
states, represented in a polytopic domain by three
vertices Vj ≡ (E,A,Aθ)j , j = 1, 2, 3, given by

V1 =

[

−0.10 0 −0.7085 −0.0758 −0.3543 −0.0379
0 −0.10 −0.2511 −0.0269 −0.1256 −0.0135

]

(18)

V2 =

[

−0.15 0 −0.3260 0.2616 −0.1630 0.1308

0 −0.15 0.2980 −0.2393 0.1490 −0.1196

]

(19)

V3 =

[

−0.20 0 −0.3957 0.3236 −0.1978 0.1618
0 −0.20 0.3513 −0.2874 0.1756 −0.1437

]

(20)

Using the results of Theorem 2, it is possible to
characterize a region (θ̄, τ̄) where this system is
robustly stable independently of delay values θ(t)
and τ(t), as shown in Figure 1 (a grid of 0.02 on τ̄
and θ̄ has been used. It is worth to mention that

this system cannot be characterized as robustly
stable by quadratic stability conditions.
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1
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θ̄

Fig. 1. (θ̄, τ̄) region for robust delay-independent
stability of neutral system (18)–(20) obtained
through the conditions of Theorem 2.

5. CONCLUSION

Sufficient LMI conditions for the analysis of ro-
bust stability of neutral systems with time-varying
delays belonging to polytopic domains have been
given, based on parameter-dependent Lyapunov-
Krasovskii functionals. Stability conditions for
special cases of the neutral system can be ob-
tained from the conditions, which also encompass
quadratic stability based results.
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