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Abstract: This paper presents a systematic approach of developing data-driven soft 
sensor using robust statistical technique. Data preprocessing procedures are described 
in detail. First, a template defined with a key process variable is used to handle missing 
data. Second, a univariate, followed by a multivariate approach, principal component 
analysis (PCA), is used to detecting outlying observations. Then, regression technique 
is employed to derive an inferential model. The proposed methodology is applied to a 
cement kiln system for realtime estimation of free lime, demonstrating improved 
performance over a standard multivariate approach. Copyright © 2005 IFAC 


Keywords: Regression analysis, Soft sensing, Statistics 






 
1. INTRODUCTION 

 
Soft sensors have been developed as supplement to 
online instrument measurements for process 
monitoring and control. Both model-based and data-
driven soft sensors have been developed. If a first 
principle model (FPM) describes the process 
sufficiently accurately, a model-based soft sensor can 
be derived. However, a soft sensor based on detailed 
FPM is computationally intensive for real time 
applications. Modern measurement technique enables 
a large amount of operating data to be collected and 
stored, thereby rendering data-driven soft sensor 
development a viable alternative.  
 
A data-driven soft sensor is an inferential model 
developed from process observations. Multivariate 
regression techniques have been extensively 
employed to develop an empirical model. 
Multivariate linear regression (MLR) suffers from 
numerical problems as well as degraded models when 
a data set is strongly collinear. Both principal 
component regression (PCR) and partial least squares 
(PLS) solve this issue by projecting the original 

process variables into a smaller number of orthogonal 
latent variables.  
 
Early work on soft sensor development assumed that 
a process model was available. The inferential model 
is developed using Kalman filter (Joseph and 
Brosilow, 1978). In case the process mechanisms are 
not well understood, empirical models, such as neural 
network (Qin and McAvoy, 1992; Radhakrishnan and 
Mohamed, 2000), multivariate statistical methods are 
used to derive the regression model (Kresta et al., 
1994; Park and Han, 2000; Zhao, 2003). 
 
Process measurements are often contaminated with 
data points that deviate significantly from the real 
values due to human errors, instrument failure or 
changes of operating conditions. Since outlying 
observations spoil the regression model, robust 
statistical approaches have been developed to provide 
reliable results in the presence of abnormal 
observations. This paper presents a systematic 
approach for building a soft sensor. The application 
example is estimation of free lime for cement kilns 
using robust multivariate methods. 
 



The paper is organized as follows. Section 2 describes 
both univariate and multivariate approaches to detect 
outlying observations. The robust PCR and PLS 
approaches are presented in section 3, followed by the 
illustrative application on development of a free lime 
soft sensor for a cement kiln. 
 
 

2. DATA PREPROCESSING 
 

Outliers are commonly defined as observations that 
are not consistent with the majority of the data 
(Pearson, 2002; Chiang et al., 2003), including 
missing data points or blocks, and observations that 
deviate significantly from the normal values. Popular 
multivariate approaches of building data-driven soft 
sensor, such as PCR and PLS, assume a linear 
relationship between variables. The performance of 
derived model deteriorates even in the presence of a 
single abnormal observation. Process data from 
cement plants are commonly contaminated, e.g. by 
abnormal values, which may lead to model 
misspecification. Therefore, outlier detection 
constitutes an essential prerequisite step for a data-
driven soft sensor design.  
 

 
 
Fig. 1. Segment of operating data from a cement kiln 
 
A heuristic procedure has been implemented in the 
paper to handle missing data. Figure 1 shows a 
segment of four process measurements from a cement 
kiln. A systematic pattern of missing data is 
observed, which can be identified with a template 
defined by a key measurement in the dataset. In case 
a small block (i.e., less than 2 hour) of data is 
missing, interpolated values using neighbor 
observations will be inserted. If a large segment of 
missing data is detected, these blocks will be marked 
and not be used to build the soft sensor.   
 
Missing data is one type of outliers. The second type 
denotes abnormal operation conditions. For example, 
the malfunction of process equipment might cause a 
change in process measurements that may affect 
several successive samples. Both univariate and 
multivariate approaches have been developed to 
detect these outlying process observations.  
 
A popular approach to detect outliers is the 3σ edit 
rule (Ratcliff, 1993). This method labels outliers 
when data points are three or more standard 
deviations from the mean. Unfortunately, this 

procedure often fails in practice because the presence 
of outliers tends to inflate the variance estimation, 
causing too few outliers to be detected. The Hampel 
identifier (Davies and Gather, 1981) replaces the 
outlier-sensitive mean and standard deviation 
estimates with the outlier-resistant median and 
median absolute deviation from the median (MAD). 
The MAD scale estimate is defined as: 

 *4826.1 xxmedianMAD i   (1) 

where *x  is the median of the data sequence. The 
factor 1.4826 was chosen so that the expected value 
of MAD is equal to the standard deviation σ for 
normally distributed data. 
 
Since process measurements from the cement kiln 
system are not independent from each other, 
detecting outliers using univariate diagnostics is not 
sufficient, resulting in masking and swamping. 
Masking refers to the case that outliers are incorrectly 
identified as normal samples; while swamping is the 
case that normal samples are classified to be outliers. 
Effective outlier detection approaches are expected to 
be based on multivariate statistical techniques. 
 
Principal component analysis (PCA) is a multivariate 
analysis tool. Given a data matrix X  constructed by 
m observations of n variables, PCA projects it to a 
lower dimensional space that explains a large fraction 
of variability in the original data.  
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where E  is the residual matrix. The orthogonal 
loading vectors, ip , are eigenvectors of the scatter 

matrix, )(
1

1 XXT

m
. The score vector, it , is the 

projection of X  along the direction of ip . The 
loading vectors corresponding to the k largest 
eigenvalues are retained to optimally capture the 
variations of the data and minimize the effect of 
random noise.  
 
The fitness between data and the model can be 
calculated using the residual, ie , defined as:  
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where ie  is the ith row of E  and kP  is the matrix of 
the first k loading vectors. The magnitude, T

iiiQ ee , 
indicates how well a sample fits to the PCA model. 
The significance level for the Q statistic is:(Jackson 
and Mudholkar, 1979) 
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 i  is the eigenvalue 

 c  is the normal deviate corresponding to 

the upper 1  percentile. 
 
Q-statistic measures the variation of a sample outside 
of the PCA model. Hotellings 2T  statistic provides an 
indication of variability within the normal subspace. 
The 2T  value of a sample is equal to the sum of 
squares of the adjusted (unit variance) scores: 
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It indicates the distance that the estimated sample by 
the PCA model is from the multivariate mean of the 
data. The statistical significance level for 2T  can be 
calculated with F-distribution:(Wise, 1991) 
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where   is the standard normal deviate. The 
combined Q- and 2T -tests are used to detect 
abnormal observations (Chiang et al., 2003). 
Measurements with QQ   or 2

,,
2

mkTT   are 
classified as outliers. In this paper the significance 
level alpha has the same value in the two tests, 
however finding a compromise between accepting 
large modelled disturbances and rejecting large 
unmodelled behaviours for outlier detection clearly 
needs further investigation. 
 
 

3. ROBUST STATISTICS 
 

Scaling is an important step in PCA. Since 
numerically large values are associated with 
numerically large variance, appropriate scaling 
methods are introduced such that all variables will 
have approximately equal weights in the PCA model. 
Autoscaling is commonly used in the absence of a 
prior knowledge about relative importance of process 
variables. First, each measurement is mean-centered 
by subtracting the mean value of the variable. Then 
the measurement is divided by standard deviation to 
be scaled down to unit variance. As previously 
mentioned, both the mean value and the standard 
deviation are inflated by the outlying observations. 
Autoscaling is not suitable in handling data which are 
especially noisy. For such cases, a robust scaling has 
been suggested (Chiang et al., 2003):  
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where M
jx  is the median and MAD

jx  the MAD of the 
variable. This paper applies robust scaling to cement 
kiln data before performing PCA.   
 
There are two types of approaches for rendering PCA 
robust. The first is detecting and removing outliers 
using a univariate approach then carry out a classic 
PCA on the new data set; the second is multivariate 

and is based on robust estimation of covariance 
matrix. In this study, elliposidal multivariate 
trimming (MVT) (Devlin et al., 1981) approach is 
used. It iteratively detects bad data based on the 
squared Mahalanobis distance: 
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where *
ix  is the current robust estimation of the 

location and *S  is the robust estimation of the 
covariance matrix. 95% of measurements with 
smallest Mahalanobis distance will be used for the 
estimation of the covariance matrix in the next 
iteration. Since the data set has been preprocessed 
with a Hampel identifier, 95% of data are retained. 
The iteration proceeds till both *

ix  and *S  converge. 
In this paper, the iteration stops at the 10th iteration 
such that at least 60% of the data is retained for the 
estimation of covariance matrix. 
 
Since outlying observations disrupt the covariance 
matrix from the initialization step. Chiang et al. 
(2003) proposed the closest distance to center (CDC) 
approach. The most consistent observations are first 
identified based on their deviation from the center of 
the data. The m/2 observations with smallest distance 
are used to calculate the mean value, *

ix . Thus, a 
PCA model is developed using the samples identified 
by the CDC/MVT procedure. A regression model is 
derived with score vectors and free lime 
measurements from the lab.  
 
Principal component regression (PCR) is a natural 
extension of PCA to derive an inferential model. The 
measurement of free lime from lab analysis is 
assigned to be vector y . Given the decomposition of 
PCA, y can be regressed against the matrix of score 
vectors,

kT  using multivariate linear regression method.  
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The coefficients between original data, X  and y  can 
be obtained straightforwardly as: 

bPc k  (10) 
PCA model identifies outlying observations. During 
the regression step, zero weights are assigned to these 
outlying observations; a weight value of one is 
assigned to normal data.  
 
PLS is a multivariate statistical approach for relating 
input data matrix, X  and dependent data block y . 
PLS can be thought of as a simultaneous 
decomposition of the X  and y  matrices using PCA. 
The X -matrix is projected onto a k-dimensional 
hyper-plane such that the coordinates are good 
predictors of y . The existence of outlying 
observations can be the source of error in the PLS 
model that is based on the assumption of linear 
relationship between input and output matrices. 
Therefore, the outlying measurements identified with 
a PCA model is downweighted before PLS analysis. 



The proposed approaches, robust PCR and weighted 
PLS, are applied to a data set collected from the log 
system of a cement kiln.  
 
In summary, the systematic procedure of applying 
robust statistical techniques for soft sensor 
development consists of the following steps: 
1. Handle missing data using a template defined 

with the key process measurement; 
2. Detect outliers with a univariate approach 

(Hampel identifier) followed by a multivariate 
approach (robust PCA) using Q and T2 tests; 

3. Derive regression model with weighted PLS; 
4. Validate the soft sensor on other process data. 
 
 

4. CEMENT KILN SYSTEM 
 
The rotary kiln is the most operationally complex and 
energy consuming equipment in the cement industry. 
For most dry processes (as shown in Figure 2), the 
feed materials are preheated by hot gas from the 
rotary kiln. A fuel combustion chamber, called 
precalciner, is integrated in the preheating tower to 
improve energy efficiency. The mixture of preheated 
and precalcined materials enters the rotary kiln, where 
fuel together with air enter from the opposite end. 
  

 
 
Fig. 2. A typical modern dry kiln system  
 
Several exothermic and endothermic reactions take 
place in both solid and gas phases. The solid feed is 
heated to an extremely high temperature (about 
1500°C) in the burning zone such that raw materials 
react and form the nodular clinker. The clinker exits 
the kiln at about 1200°C, then is cooled down by 
cross-flowing air in a separate clinker cooler. Partial 
heat integration is achieved by feeding part of the 
heated air back into the kiln and part to the 
precalciner. The operating data of the precalciner and 
the kiln are used to derive a soft sensor of free lime in 
the clinker. 
 
The quality of the kiln product is indicated by the 
amount of free lime. The direct measurement is 
generally only available with a delay time of about an 
hour. In addition, the measurement also suffers from 

the perturbations within the kiln and the cooler, 
which result in uncertain indication of the average 
quality. It is desirable to develop a soft sensor that is 
able to accurately predict the content of free lime in 
real time, and can be employed for effective quality 
control.  
 
 

5. CASE STUDY 
 
The data from a cement kiln log system is used in this 
study. There are 13 process measurements available, 
including kiln drive current, kiln feed, fuels to 
calciner and kiln, plus several temperature 
measurements within the kiln system. Kiln fuel is the  
 

 
 
Fig. 3. Kiln fuel flowrate during validation period 
 
main manipulated variable for the kiln system, which 
varies from between 5 and 3.5 ton per hour. As 
shown in Figure 3, kiln fuel measurement is heavily 
contaminated by the missing values and outlying 
observations. Following the procedure mentioned 
previously, a template is defined by the kiln drive 
measurement to identify the pattern of missing 
observations,  
 
The standard measurements are logged every 10 min, 
whereas the laboratory analysis of free lime content 
of the clinker is logged approximately every 2 hours. 
A data block of 22000 samples is selected in this 
study. the data block between 8000 and 15500 is used 
to derive the model and samples between 18000 and 
21500 for validation.  
 
The one-step ahead prediction residual sum of 
squared errors (PRESS) between the model and 
measured lime content is used to select the number of 
principal components (PCs): 
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where VN is the total number of samples during the 
validation period. It is calculated only when a new 
lab measurement is available. The PRESS of the PCR 
model using 6 PCs has the minimum PRESS (see 
Figure 4). The 5th PC does not contribute positively 
to the prediction error, which suggests that this factor 
is not relevant for predictive ability of the model.  
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Fig. 4. PRESS of robust PCR model 
 
Improved predictive ability is achieved by including 
the 6th principal component at the expense of an 
increased noise level. The validation of PCR models 
with 6 PCs (PRESS = 39.607) is shown in Figure 5. 
 

 
 
Fig. 5. Validation of robust PCR model with 6 PCs  

(* - lab measurements; solid line - robust PCR 
model) 

 
Given the PCA decomposition, zero weights are 
assigned to abnormal points to downweight these 
observations before a regression model is derived 
between score vectors and free lime results. 95% 
significance level is commonly used for Q- and 2T -
tests. The lower the significance level, the higher the 
chance to reject outlying points, at the risks of 
rejecting essential process dynamics. Thus, the 
optimal value of significance level for Q- and 2T - 
tests should be selected considering the quality of the 
data. Figure 6 shows the PRESS of robust PCR 
model using 6 PCs with varied Q- and 2T - test 
significance level, varying from 100% to 95%. It is 
obvious that downweighting outlying observations 
improves the predictable ability of the regression 
model (see Figure 6). The minimum (PRESS = 
38.362) is obtained when the significance level is 
selected as 97.5%. 
 

 
 
Fig. 6. PRESS of robust PCR model of 6 PCs with 

significance level varied from 100% to 95% 

Another regression model is derived with PLS 
approach for the same block of operating data. The 
relation between PRESS and the number of latent 
variables (LV) is shown in Figure 7.  
 

 
 
Fig. 7. PRESS of PLS model 
 
The PLS analysis shows a minimum of PRESS at 2 
LVs. PLS finds LVs that describe a large amount of 
variation in X  and are correlated with dependent 
variables, Y , while the PCs in PCR approach are 
selected only on the amount of variation they explain 
in X . Therefore, PLS model is able to capture more 
of the relevant information than PCR model with a 
smaller number of LVs. Comparisons of the PLS 
model with lab measurements during modeling and 
validation periods are shown in Figure 8 and 9 
respectively. 
 

 
 
Fig. 8. PLS model with 2 LVs versus lab 

measurements during modelling period (* - lab 
measurements; solid line - PLS model) 

 

 
 
Fig. 9. PLS model with 2 LVs versus lab 

measurements during validation period (* - lab 
measurements; solid line - PLS model) 

 
The study with robust PCR models shows enhanced 
performance using downweight scheme based on the 
PCA analysis of the data matrix, X . Since PLS model 
is based on the assumption of linear relationship, 
the result of PLS analysis is affected by outlying 
observations in the dataset. Downweighting these 
data points is beneficial for the PLS model. 
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Fig. 10. PRESS of weighted PLS model with 2 LVs 

significance level varied from 100% to 95% 
 
Then, the weighting vectors obtained during the PCR 
analysis is applied to the PLS model. The weighting 
vectors vary with the selection of significance level. 
Figure 10 shows the PRESS of weighted PLS model 
versus the change of significance level from 100% to 
95%. The minimum is obtained with the significance 
level 99.5% with a PRESS of 41.236, about 10% less 
than that of the standard PLS model (PRESS = 
45.004).  
 
Results of applying standard and robust PCR, 
standard and weighted PLS are summarized in Table 
1. With a larger number of principal components 
employed in the development of regression model, 
sum of squared errors (SSE) during the modeling 
period of PCR approaches are comparable to those of 
PLS models. Among all the approaches investigated 
in this paper, standard PLS model is worst regarding 
predictive ability. Due to the contamination of 
outlying observations, PRESS of standard PLS 
(45.004) is higher than the weighted model (41.236) 
derived utilizing the weighting vector obtained by 
PCA analysis. The robust PCR model (38.362) 
performs slightly better than the PLS model at the 
cost of using 4 more principal components. 
 

Table 1. Comparison of PCR and PLS models 
 

Approach No. of PCs SSE PRESS 
Std. PCR 7 87.658 43.630 
Robust PCR 6 87.235 38.362 
Std. PLS 4 87.003 45.004 
Weighted PLS 2 87.520 41.236 

 
 

6. CONCLUSIONS 
 

This paper presents a systematic approach to build a 
soft sensor using robust statistical techniques. The 
proposed methodology is applied to predict free lime 
of cement kiln systems. Due to the low signal-to-
noise ratio in operating data, data preprocessing 
demonstrates to be an essential step for development 
of data-drive soft sensor.  
 
A case study demonstrates the improved performance 
of robust PCA model in the detection outliers. The 
real-time estimation of free lime can be obtained with 
the data-driven soft sensor, which shows some 

potential to be used in closed loop control. However, 
the performance of soft sensor depends substantially 
on the data used to build the inferential model. Due to 
the contamination of process measurements in 
operating data, downweighting outlying observations 
is beneficial to enhance the predictive ability of a 
regression model. The case study indicates the 
existence of a optimal downweighting vector 
determined by the significance level of Q- and 2T - 
statistics. The issue of finding the optimal 
significance levels for regression model and 
integrating the information from irregularly-sampled 
low quality measurements into the weighting vector 
needs to be performed in the future.  
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