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Abstract: The class of nonlinear system that can be put into nonlinear observer
form (linear system with output injection) can be broadened if we employ the
system immersion. We provide an algorithm with which one can check whether a
forced system with relative degree r can be transformed into nonlinear observer
form or not. The proposed algorithm is an extension of the previous result and
does not require the relative degree 1 assumption. In addition, it is seen that, the
immersibility can always be checked via algebraic computations except one special
case when the relative degree equals to the system dimension (in the case, only one
first order differential equation appears in the algorithm).Copyright c©2005 IFAC
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1. INTRODUCTION

The observer error linearization problem is to
transform the given system into a linear sys-
tem with output injection. In this setting, the
Luenberger-type observer yields a linear dynamics
of the state estimation error. As far as the trans-
formation is concerned, most results in the litera-
ture utilize the state diffeomorphism and output
diffeomorphism (Krener and Isidori, 1983; Bestle
and Zeitz, 1983; Krener and Respondek, 1985; Xia
and Gao, 1989; Keller, 1987; Hou and Pugh, 1999;
Glumineau et al., 1996; Guay, 2001). There are
some results which employee generalized trans-
formations to enlarge the class of systems, for
example, system immersions (Levine and Marino,
1986; Back and Seo, 2004b; Jouan, 2003) and
smooth maps with continuous inverse (Xia and
Zeitz, 1997). For further discussion on this topic,
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see the papers cited above and the references
therein.

In this paper, we consider the system immersion
of forced nonlinear system into nonlinear observer
form. In particular, a constructive algorithm to
check the immersibility is developed. Some al-
gorithms for unforced systems are available in
the literature (Back and Seo, 2004b; Back and
Seo, 2004a; Jouan, 2003). However, these algo-
rithms require some assumptions, for example,
dimensional assumption or constant rank assump-
tion. One of the main obstacle lies in the unforced
case problem is that one should solve a differential
equation with several unknowns. Fortunately, in
the forced system case, all of the unknowns related
to the system immersion can be solved via some
algebraic computations except some very special
case. In Jouan (2003), an algorithm was given for
the forced system case under the condition that
the system has relative degree 1, which has not
been pointed out clearly in Jouan (2003). In this



work, we will generalize this result to the case
when the system admits a relative degree less than
the system dimension.

In Section 2, we formulate the problem and char-
acterize the class of forced nonlinear systems
which can be immersed into nonlinear observer
form. A straightforward algorithm to check the
immersibility is derived in Section 3, and an illus-
trative example is given in Section 4.

2. PROBLEM FORMULATION AND BASIC
RESULTS

Let us consider a nonlinear system of the form:

ẋ = f(x) + g(x)u,
y = h(x), (1)

where u is the control input belong to some set
of measurable bounded functions U ∈ L∞(R+,R)
and f(x), g(x) and h(x) are smooth on an open
connected subset D of Rn. We assume the observ-
ability rank condition:

dim span{dh, dLfh, · · · , dLn−1
f h} = n, ∀x ∈ D.

(2)
The observability assumption enables us to define

∂j
i (a(x)) :=

∂ja(x)
∂(Li

fh)j
, 0 ≤ i ≤ n−1, j = 1, 2, · · · .

We abbreviate ∂1
i a(x) as ∂ia(x). In addition, a′(h)

denotes the derivative of a(h) w.r.t. h. To obtain
∂ia(x), express the one form da(x) as a linear
combination of the one forms dh, · · · , dLn−1

f h and
then pick the coefficient of dLi

fh.

We also consider the N dimensional observer form
ż = Az + a(y, u), z ∈ RN ,

y = Cz
(3)

where

A :=




0 · · · 0 0
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0


 , a(y, u) :=




a1(y) + ã1(y)u
a2(y) + ã2(y)u

...
aN (y) + ãN (y)u


 ,

C :=
[
0 · · · 0 1

]
.

Let Xt(u, x0) (resp., Zt(u, z0)) be the solution of
system (1) (resp., (3)) starting from x0 ∈ D (resp.,
z0 ∈ Φ(D)) and driven by u and let τu

x0
:= sup{t ≥

0 | Xt(u, x0) ∈ D}
Given (1) and (3), we define the immersibility.

Definition 1. The system (1) is said to be im-
mersible into N = n + m dimensional observer
form (3) in D if there exists a smooth function
Φ : D → Φ(D), D ⊂ Rn, Φ(D) ⊂ RN such that if
for every x0 and every z0 with Φ(x0) = z0, then
h(Xt(u, x0)) = CZt(u, z0) for every t such that
0 ≤ t < τu

x0
.

The next result provides a condition for the sys-
tem (1) to be immersible into observer form (3).
The proof can be found in Jouan (2003).

Theorem 1. Suppose that the drift part of the
system (1) is observable on D. Then the system
(1) is immersible into N = n + m dimensional
observer form in D if and only if, in D:

(a) The drift part of the system (1) is immersible
into observer form.

(b) The immersion z=Φ(x)=[φ1(x),· · · ,φN (x)]T

satisfies

dLgφi ∧ dh = 0, i = 1, · · · , N. (4)

Let us discuss on the conditions of the theorem.
As far as the condition (a) is concerned, it is
equivalent to find N functions a1(h), · · · , aN (h)
of the characteristic equation

LN
f h = a1(h) + Lfa2(h) + · · ·+ LN−1

f aN (h) (5)

of which proof can be found in Back and Seo
(2004b), or in Jouan (2003). In addition, from
these papers, we know that a solution a1(h), · · · ,
aN (h) to (5) provides us the immersion in a closed
form and the components of Φ are given by

zN−k :=φN−k(x)=Lk
fh−

k−1∑

i=0

Lk−i−1
f aN−i(h),

k = 0, · · · , N − 1.

(6)

In general, it is not easy to solve the differen-
tial equation (5) since it contains N unknowns
which should be solved simultaneously. Some algo-
rithms are available under a dimensional assump-
tion (Back and Seo, 2004b) or constant rank as-
sumption (Back and Seo, 2004a). Although these
algorithms are constructive, one should solve a
differential equation at each step of the algorithm.
We will show that in the forced system case, it is
possible to check the immersibility via algebraic
calculations except a very special case.

Let us recall a necessary and sufficient condition
for condition (a) which has been proved in (Back
and Seo, 2004b). We will use this result during the
derivation of the algorithm.

Proposition 1. [Back and Seo (2004b)] Let N =
n + m and suppose the system is observable. The
drift part of the system (1) is immersible into
N dimensional observer form if and only if there
exists a solution a1(h), · · · , aN (h) to the equations

∂i(LN
f h)=

N−1∑

k=i

(
k

i

)
Lk−i

f a′k+1(h)

+
m−1∑

k=0

k∑

j=0

(
n + k

n + j

)
Lk−j

f a′n+k+1(h)∂iL
n+j
f h

(7)

where i = 0, · · · , n− 1.



Now, let us investigate what the condition (4)
means. If the system (1) is immersible into (3),
then the immersion Φ(x) should satisfy the condi-
tion (4). For the immersion given by (6), consider
the case k = 0:

dLgφN (x) ∧ dh = 0.

Since φN (x) = h, the condition implies that Lgh
should be a function of h only.

For k = 1, dLgφN−1(x) ∧ dh = 0. Using
φN−1(h) = Lfh− aN (h), we have

dLgφN−1(h) = dLgLfh− a′N (h)dLgh.

From dLgh ∧ dh = 0, we obtain

dLgLfh ∧ dh = 0. (8)

Thus, LgLfh should be a function of h only.

Let us consider the case k = 2. By definition,
φN−2(h) = L2

fh− LfaN (h)− aN−1(h). Thus,

dLgφN−2(h) ∧ dh = 0

becomes dLgL
2
fh ∧ dh = a′′N (h)LghdLfh ∧ dh.

Hence, if Lgh is not zero on D (i.e., Lgh 6= 0,∀x ∈
D), we can obtain a relation for a′′N (h) as follows:

a′′N (h) =
1

Lgh

∂LgL
2
fh

∂Lfh
.

This relations implies that we can obtain the
unknown using aN condition (b) of Theorem 1.

The main purpose of this paper is to generalize
this fact in order to derive the relations that the
unknowns should satisfy. If it is possible, one can
obtain N unknowns without solving the charac-
teristic equation and check the immersibility via
algebraic computations. To achieve this, we first
note that the condition Lgh 6= 0,∀x ∈ D implies
that the system has relative degree 1. It will be
shown that the relative degree plays an important
role while we derive an algorithm to check the
immersibility.

Definition 2. The system (1) is said to have rela-
tive degree r, 1 ≤ r ≤ n, in D if

LgL
i
fh(x) = 0, 0 ≤ i ≤ r − 2, ∀x ∈ D

LgL
r−1
f h(x) 6= 0, ∀x ∈ D.

(9)

The rest of this section is devoted to develop some
useful tools of which proofs are omitted for lack
of space.

Lemma 1. For a smooth function a(h), we have

Lk
fa(h) =

k−1∑

j=0

(
k − 1

j

)
Lk−1−j

f a′(h)Lj+1
f h. (10)

Lemma 2. If the system (1) has relative degree r,
then we have

LgL
k
fa(h) = 0, k = 0, · · · , r − 2, (11)

where a(h) is any smooth function.

Lemma 3. If the system (1) has relative degree r,
then

dLgφN−k ∧ dh = 0, 0 ≤ k ≤ r − 2. (12)

Lemma 4. If the system (1) has relative degree
r, and immersible into N = n + m dimensional
observer form, then

dLgL
r−1
f h ∧ dh= 0, (13)

dLgL
r
fh ∧ dh= 0. (14)

3. IMMERSION ALGORITHM

In this section, an algorithm is presented for the
immersion problem. As mentioned in the previous
section, the condition (b) of Theorem 1 can be
used to obtain the relations which the unknowns
ai(h)’s should satisfy. However, the condition does
not provide everything we want. The number of
unknowns can be obtained from the condition is
closely related to the relative degree of the system.
In fact, if the system has relative degree r, then
ar+2(h), · · · , aN (h) can be obtained. Therefore,
when r = n, the function an+1(h) can not be
obtained in a closed form from the condition.
Thus, we first derive all relations that can be
obtained from the condition (b) of Theorem 1
and provide a solution to the case r = n. Then,
this result will be combined with Proposition 1 to
construct the desired algorithm.

To begin with, we provide a necessary condition
for the unknowns.

Lemma 5. If the system (1) has relative degree
r, and immersible into N = n + m dimensional
observer form, the function aN (h) in (6) satisfies

a′′N (h) =
1

rLgL
r−1
f h

∂1LgL
r+1
f h, (15)

and the functions aN−(k−1)(h) (2 ≤ k ≤ N−r−1)
in (6) enjoy the relation:

a′′N−(k−1)(h)

=
1

rLgL
r−1
f h

[
∂1LgL

r+k
f h−

k−2∑

j=0

ejLgL
ej−1
f a′N−j(h)

− δ+
k,n

k∑

i=n




k−i∑

j=0

(
ej

i

)
LgL

ej−i
f a′N−j(h)


 ∂1L

i
fh

−
k∑

i=2




k−i∑

j=0

(
ej

ci

)
Lk−i−j

f a′N−j(h)


 ∂1LgL

r−1+i
f h

]
,

(16)

where ej := r + k − 1− j, ci := r− 1 + i, and the
function δ+

k,n is defined by

δ+
k,n =

{
1, if k ≥ n
0, otherwise. (17)



Remark 1. The equation (16) has an interesting
structure; the function ai(h) is dependent on the
functions ai+1(h), ai+2(h), · · · , aN (h). Thanks to
this structure, the unknowns can be obtained one
by one. Firstly, the function aN (h) is given by (15)
directly. With the function aN (h) at hand, we can
proceed to obtain aN−1(h) by (16) with k = 2.
Similarly, the functions aN−2(h), aN−3(h), · · · ,
ar+2(h) can be obtained by applying the equation
(16) step by step.

It is worthwhile to point out that Lemma 5 is
a necessary condition of the condition (b) of
Theorem 1. In order to achieve our goal, we
provide a necessary and sufficient condition for
the condition as follows:

Lemma 6. Suppose the system (1) is observable
and has relative degree r. If the drift part of the
system (1) is immersible into observer form, then
the condition (b) of Theorem 1 is equivalent to
the following conditions

(a) LgL
r−1
f h ∧ dh = 0, LgL

r
fh ∧ dh = 0.

(b) The functions ar+2(h), · · · , aN (h) satisfy the
equation (15) and the equation (16) for all
2 ≤ k ≤ n + m− r − 1

(c) For all s = 2, · · · , n− 1 and 1 ≤ k ≤ n+m−
r − 1, the functions ar+2(h), · · · , an+m(h)
satisfy

∂sLgL
r+k
f h

− δ+
k,s

k−s∑

j=0

(
e?(j)

s

)
LgL

e?(s+j)
f a′N−j(h)

− δ+
k,n

k∑

i=n




k−i∑

j=0

(
e?(j)

i

)
LgL

e?(i+j)
f a′N−j(h)


 ∂sL

i
fh

− δ+
k,2

k∑

i=2




k−i∑

j=0

(
e?(j)

r − 1 + i

)
Lk−i−j

f a′N−j(h)


×

∂sLgL
r−1+i
f h = 0

where e?(q) := r + k− 1− q (q is an integer).

Although Lemma 5 is a necessary condition for
immersibility, it provides us a checkable method
to find the unknowns. In fact, as pointed out in
Remark 1, the unknowns ar+2(h), · · · , aN (h) can
be obtained recursively. Thus, when r ≤ n − 1,
using Lemma 5, Lemma 6 and Proposition 1, it
is possible to develop a necessary and sufficient
condition which characterizes the immersibility
and can be checked step by step. It should be
mentioned that when r = n, it is required to
derive a relation for an+1(h), since in this case
Lemma 5 works only for the unknowns an+2(h),
· · · , aN (h). In order to solve this problem, we
provide a relation for an+1(h) as follows:

∂2
n−1L

N
f h = a′′n+1(h) + a′n+1(h)∂2

n−1L
n
f h

+ ∂n−1

(
n+m−1∑
s=n+1

Ls−n+1
f a′s+1(h)

)

+ ∂n−1




m−1∑
s=1

s∑

j=0

(
n+s
n+j

)
Ls−j

f a′n+s+1(h)∂n−1L
n+j
f h




which is obtained by operating ∂n−1 to the equa-
tion (7) with i = n− 1.

Now, we are in a position to state the main re-
sult of this paper. It is an immersion algorithm
for forced system (IMALGOFS for short). Using
IMALGOFS, one can check whether a nonlinear
system can be immersed into observer form. More-
over, the algorithm is constructive; one does not
need to solve the unknowns simultaneously.

Let us explain the algorithm in detail. At first,
check if the control vector field satisfies Lemma 4
(Step 0). Secondly, at Step 1, Step k(2 ≤ k ≤ N−
r−1) and Step N−r, one calculates ar+2(h), · · · ,
aN (h) (when r < n) or an+1(h), · · · , aN (h) (when
r = n) and check the condition (c) of Lemma 6.
Finally, at Step N − r +1 and Step N − r +2, one
checks whether a1(h), · · · , an(h) can be obtained
or not and verify that the functions ar+1(h), · · · ,
an(h) obtained from Lemma 5 are equivalent to
ar+1(h), · · · , an(h). For simplicity, we define a
function Mk(x) for 1 ≤ k ≤ N − r − 1 as

Mk(x) :=
1

rLgLr−1
f

h

[
∂1LgLr+k

f h

− δ+
k,1

k−2∑
j=0

(e?(j))LgL
e?(j)−1
f

a′N−j(h)

− δ+
k,2δ+

k,n

k∑
i=n

(
k−i∑
j=0

(e?(j)

i

)
LgL

e?(i+j)
f a′N−j(h)

)
∂1Li

f h

− δ+
k,2

k∑
i=2

(
k−i∑
j=0

( e?(j)

r − 1 + i

)
Lk−i−j

f
a′N−j(h)

)
∂1LgLr−1+i

f
h

]
.

(18)

IMALGOFS-the immersion algorithm for
forced system:
Suppose the observable system (1) has relative
degree r ≤ n. Follow the steps to obtain the
unknowns a1(h), · · · , aN (h). If the procedure fails
at any step, then the algorithm fails.

Step 0: Check the relations:dLgL
r−1
f h ∧ dh =

0, dLgL
r
fh ∧ dh = 0.

Step 1: Check if M1(x) is a function of h only and
check if

∂sLgL
r+1
f h = 0, s = 2, · · · , n− 1.

If this is true, set a′′N (h) = M1(x) and proceed to
Step 2.

Step k(2 ≤ k ≤ N − r − 1): Let e?(q) := r +
k − 1 − q (q is an integer). Using the functions



a′′N−k(h), · · · , a′′N (h) obtained at previous steps,
check if Mk(x) is a function of h only and check if
the following equations for s = 2, · · · , n− 1 hold.

∂sLgLr+k
f

h− δ+
k,s

k−s∑
j=0

(e?(j)

s

)
LgL

e?(s+j)
f

a′N−j(h)

− δ+
k,n

k∑
i=n

[
k−i∑
j=0

(e?(j)

i

)
LgL

e?(i+j)
f

a′N−j(h)

]
∂sLi

f h

−
k∑

i=2

[
k−i∑
j=0

( e?(j)

r − 1 + i

)
Lk−i−j

f
a′N−j(h)

]
×

∂sLgLr−1+i
f

h = 0.

If this is true, then set a′′N−(k−1)(h) = Mk(x) and
proceed to Step k + 1.

Step N − r: If r 6= n, jump to next step. If r = n,
solve (19) (shown below) for a′n+1(h) using the
functions an+2(h), · · · , aN (h).

∂2
n−1LN

f h

=a′′n+1(h) + a′n+1(h)∂2
n−1Ln

f h

+ ∂n−1

(
N−1∑

s=n+1

Ls−n+1
f

a′s+1(h)

)

+ ∂n−1

(
m−1∑
s=1

s∑
j=0

(n + s

n + j

)
Ls−j

f
a′n+s+1(h)∂n−1Ln+j

f
h

)
.

(19)

If a′n+1(h) can be obtained, proceed to next step.
Step N − r + 1: Let an+i(h) = an+i(h), 1 ≤ i ≤

m, where an+i(h) are the functions obtained at
previous steps. Using the functions an+i(h), solve
the equation (20) (shown below) recursively for
a1(h), · · · , an(h). Precisely, let i = n−1 and solve
(20) for an(h). Then, let i = n − 2. Using the
functions an+1(h), · · · , aN (h) from previous steps,
and the function an(h) obtained at the operation
i = n− 1, solve (20) for an−1(h), and so on.

a′i+1(h)

=∂iL
N
f h−

N−1∑

s=i+1

(
s

i

)
Ls−i

f a′s+1(h)

−
m−1∑
s=0

s∑

j=0

(
n + s

n + j

)
Ls−j

f a′n+s+1(h)∂iL
n+j
f h.

(20)

Step N − r + 2: Decide the integral constants of
ai(h) and ai(h), i = 1, · · · , n, in order that
ai(h) = ai(h).

The algorithm developed so far provides a neces-
sary and sufficient condition stated below.

Theorem 2. Suppose the system (1) has relative
degree r ≤ n. Then, the systems is immersible
into N = n + m dimensional observer form if and
only if there exist a solution {a1(h), · · · , aN (h)}
to IMALGOFS.

4. EXAMPLE

Let us consider 3 dimensional nonlinear system

ẋ1 = x2

ẋ2 = x3 +
1
2
x2

3 +
1
3
x3

3 + α(x1) + g2(x)u

ẋ3 = x3

y = h(x) = x1,

(21)

where α(·) is a smooth function, and g2(x) is a
smooth function such that g2(x) 6= 0 ∀x ∈ R3.
The system has relative degree 2 and globally
observable. Simple calculation yields:

Lfh =x2, L2
fh = x3 +

1
2
x2

3 +
1
3
x3

3 + α(x1)

L3
fh =x3 + x2

3 + x3
3 + α′(x1)x2

L4
fh =[1 + α′(x1)]x3 + [2 +

1
2
α′(x1)]x2

3

+ [3 +
1
3
α′(x1)]x3

3 + α′(x1)α(x1)

L5
fh =[1 + 3α′′(x1)x2 + α′(x1)]x3

+ [4 +
3
2
α′′(x1)x2 + α′(x1)]x2

3

+ [9 + α′′(x1)x2 + α′(x1)]x3
3 + α(3)(x1)x3

2

+ 3α′′(x1)α(x1)x2 + α′(x1)α′(x1)x2.

Let F (x1, x2, x3) be a smooth function. The iden-
tity:

∂F

∂x1
dx1 +

∂F

∂x2
dx2 +

∂F

∂x3
dx3

= ∂0Fdh + ∂1dLfh + ∂2dL2
fh,

yields

∂0F =
∂F

∂x1
− 1

1 + x3 + x2
3

∂F

∂x3
· α′(x1),

∂1F =
∂F

∂x2
, ∂2F =

1
1 + x3 + x2

3

∂F

∂x3
.

The system is not diffeomorphic to 3 dimensional
observer form and IMALGOFS tell us that the
system is not immersible into 4 dimensional ob-
server form. Now, let us try to immerse this sys-
tem into 5 dimensional observer form (n = 3 and
m = 2). From Step 0, we set g2(x) = g2(x1). At
Step 1, we have a′′5(x1) = 0. Let a′5(x1) = c5 (c5

is a constant). At Step 2, since

LgL
4
fh = 2x2 · α′′(x1)g2(x1),

∂2LgL
4
fh = 2α′′(x1)g2(x1), ∂2LgL

4
fh = 0,

we have

M2(x) =
1

2g2(x1)
[∂1LgL

4
fh− 3LgL

2
fa′5(x1)

− a′5(x1)∂1LgL
3
fh] := α′′(x1),

and

∂2LgL
4
fh− 3LgLfa′5(x1)− a′5(x1)∂2LgL

3
fh = 0.

Thus, we set a′4(x1) = α′(x1) + c4, where c4 is a
constant. As r 6= n, we pass Step 3. For Step 4,



let a′5(x1) = c5 and a′4(x1) = α′(x1) + c4. The
equation (20) for i = 2 becomes

a′3(x1) = ∂2L
5
fh− 2Lfa′4(x1)− 6L2

fa′5(x1)

− a′4(x1)∂xL3
fh− 4Lfa′5(x1)∂2L

3
fh− a′5(x1)∂2L

4
fh

Using the relations

∂2L
3
fh =

1 + 2x3 + 3x2
3

1 + x3 + x2
3

,

∂2L
4
fh = α′(x1) +

1 + 4x3 + 9x2
3

1 + x3 + x2
3

,

∂2L
5
fh = 3α′′(x1)x2 +

1
1 + x3 + x2

3

· [1 + α(x1)

+ [8 + 2α′(x1)]x3 + [27 + 3α′(x1)]x2
3],

we have
a′3(x1) = −c5α′(x1)

+
1− c4 − c5 + [8− 2c4 − 4c5]x3 + [27− 3c4 − 9c5]x2

3

1 + x3 + x2
3

.

Since a′3(x1) is a function of x1 only, it is required
that c4 = −11 and c5 = 6. Similarly, from (20)
with i = 1, we obtain a′2(x1) = 11α′(x1). From (5)
a1(x1) can be computed as a1(x1) = −6α(x1) +
c1. Therefore, the system is immersible into 5-
dimensional observer form. The transformed sys-
tem and the immersion are shown below:

ż1 = −6α(y)− 6g2(y)u
ż2 = z1 + 11α(y) + 11g2(y)u
ż3 = z2 − 6α(y) + 6y − 6g2(y)u
ż4 = z3 + α(y)− 11y + g2(y)u
ż5 = z4 + 6y
y = z5

z =




−6x2 + 6x3 +
3
2
x2

3 +
2
3
x3

3

−6x1 + 11x2 − 5x3 − 2x2
3 − x3

3

11x1 − 6x2 + x3 +
1
2
x2

3 +
1
3
x3

3

−6x1 + x2

x1




.

5. CONCLUSIONS

In order to characterize the immersibility of an
unforced n dimensional nonlinear system into n+
m dimensional observer form, one should solve
the characteristic equation, which is in general a
hard problem because it is required to find n +
m unknowns simultaneously from one differential
equation. Although the algorithms developed pre-
viously enable us to find the unknowns one by
one, it is required to solve a differential equation
at each steps.

In this paper, we observed the close relation be-
tween the relative degree and the system immer-
sion in the forced systems case and developed an
algorithm with which not only the the immersibil-
ity of a system into observer form can be checked
but also the unknowns for the immersion can be

found one by one. We note that the unknowns can
always be computed through a closed form alge-
braic computation except a very special case when
r = n; in this case only one first order differential
equation appears. Extensions to MIMO case with
vector relative degree will be of interest.

REFERENCES

Back, J. and J. H. Seo (2004a). A constructive al-
gorithm for system immersion into nonlinear
observer form. In: IFAC Symp. on Nonlinear
Control Systems Design (NOLCOS).

Back, J. and J. H. Seo (2004b). Immersion of
nonlinear systems into linear systems up to
output injection: characteristic equation ap-
proach. Int. J. Control 77(8), 723–734.

Bestle, D. and M. Zeitz (1983). Canonical form
observer for non-linear time-variable systems.
Int. J. Control 38, 419–431.

Glumineau, A., C. H. Moog and F. Plestan (1996).
New algebro-geometric conditions for the lin-
earization by input-output injection. IEEE
Trans. Automat. Contr. 41(4), 598–603.

Guay, M. (2001). Observer linearization by out-
put diffeomorphism and output-dependent
time-scale transformations. In: IFAC Symp.
on Nonlinear Control Systems Design (NOL-
COS).

Hou, M. and A. C. Pugh (1999). Observer with
linear error dynamics for nonlinear multi-
output systems. Systems & Control Letters
37, 1–9.

Jouan, P. (2003). Immersion of nonlinear systems
into linear systems modulo output injection.
SIAM J. Control Optim. 41(6), 1756–1778.

Keller, H. (1987). Non-linear observer design by
transformation into a generalized observer
canonical form. Int. J. Control 46(6), 1915–
1930.

Krener, A. J. and A. Isidori (1983). Linearization
by output injection and nonlinear observers.
Systems & Control Letters 3, 47–52.

Krener, A. J. and W. Respondek (1985). Nonlin-
ear observers with linearizable error dynam-
ics. SIAM J. Control Optim. 23(2), 197–216.

Levine, J. and R. Marino (1986). Nonlin-
ear system immersion, observers and finite-
dimensional filters. Systems & Control Letters
7, 133–142.

Xia, X.-H. and M. Zeitz (1997). On nonlinear con-
tinuous observers. Int. J. Control 66(6), 943–
954.

Xia, X.-H. and W.-B. Gao (1989). Nonlinear ob-
server design by observer error linearization.
SIAM J. Control Optim. 27(1), 199–216.


