
MODEL CHECKING PLANS FOR FLEXIBLE

MANUFACTURING SYSTEMS

Leandro Dias da Silva ∗ Hyggo Almeida ∗

Angelo Perkusich ∗ Péricles Rezende Barros ∗

∗ Electrical Engineering Department
Federal University of Campina Grande

58109-970, Campina Grande, PB, Brazil
{leandro,hyggo,perkusic,prbarros}@dee.ufcg.edu.br

Abstract: In this work an approach to analyze non-deterministic execution plans
for flexible manufacturing systems is presented. This approach consists of modeling
the system using coloured Petri nets and then, by simulation, discover the possible
executions for the system. After, model checking is used to prove that the model
behavior do not deviate from the planning. Based on this approach it is possible
to model a production system based on cells and to predict and to prove its
behavior before the system is developed. Therefore, the analyzed model can be
used to develop flexible and dependable production systems to meet the market
requirements of quantity, diversity, and quality. Copyright c©2005 IFAC

Keywords: Flexible Manufacturing Systems, Planning, Model Checking,
Coloured Petri Nets.

1. INTRODUCTION

Flexible Manufacturing Systems (FMS) (Zhou
and Venkatesh, 1999) have been used as an ap-
proach to deal with the complexities of modern
production system. The motivation for this is that
these systems, if properly designed and analyzed,
can be very flexible, scalable, and dependable.
The flexibility arises from the fact that they are
organized on cells. The cell consists of production
resources, such as machines. Therefore, changing
part of the production means, in most cases,
changing a cell without modifications on other
cells or the rest of the system. The scalability
is related to the flexibility explained before, and
to add a new feature to the production system
usually means to add new cells. The dependability
is also related to the flexibility because changing
portions of the system reduces the possibility of
problems with other portions that are working
properly and were not modified.

Due to the technological advances more sophis-
ticated production systems have been developed.
These new systems must be carefully designed and
analyzed beforehand the actual system is adopted
in the production because they are expensive,
complex, and will probably change over a short
amount of time. Moreover the demand is also
increasing not only in quantity and quality but
also in diversity of products.

An execution plan is a sequence of nondetermin-
istic actions that the entities of an FMS must
take in order to produce a final product. The
process for generating a plan is called planning.
Due to the inherent decentralized nature of any
FMS it is difficult to define deterministic choices
based on global information. Therefore, there is no
single planning algorithm than can be applied for
all systems. Many plan verification methods are
described in the literature but they are efficient for
some systems and inefficient for others. A possible
approach to deal with such situation is to adopt

efficient techniques for either plan generation or
verification (Pistore and Traverso, 2001).

Petri nets have been widely used for FMS mod-
eling and analysis (Zhou and Venkatesh, 1999;
Proth and Xie, 1997; Desrochers and Al-Jaar,
1994). In this work Hierarchical Coloured Petri
Nets (HCPN) (Jensen, 1992) is used. This exten-
sion to the Petri nets formalism incorporates the
concepts of data types and hierarchy that promote
more compact and organized models of complex
systems. The use of formal methods in the design
of systems aggregates the advantages of automatic
simulation, and proof of properties with model
checking (Clarke et al., 1999), for example. There-
fore, HCPN and model checking are used to reason
about the complexity associated with the gener-
ation and verification of nondeterministic plans
for FMS (Cimatti and Roveri, 2003). A similar
approach has been applied to the multiagent sys-
tem domain as described in (Silva et al., 2004).
The Design/CPN tool set is used for drawing and
analyze the HCPN models (Jensen, 1999).

The remaining of this paper is organized as fol-
lows. In Section 2 the model for a FMS is de-
scribed. In Section 3, the plan generation strategy
is introduced. In Section 4 the verification of plans
is presented. In Section 5, some related work are
discussed. Finally, in Section 6, final remarks are
presented.

2. A FLEXIBLE MANUFACTURING
SYSTEMS MODEL

A Flexible Manufacturing System (FMS) is a
system organized in cells. Each cell has one or
more related machines and a transport system.
Two kinds of transport system are considered,
inside cells and outside cells. Some other issues
could be part of an FMS model such as, for
example, scheduling, and information flow, among
others. But in this work the main interest is on
production and transport issues of FMS in order
to reason about the execution plans.

In Figure 1 a diagram illustrating a simple FMS is
shown. The modeling and characterization of such
systems has been previously done in (Silva and
Perkusich, 2004). As the focus is production and
transport issues, a framework is used to develop
FMS models related to these systems. Using this
framework, any FMS with any number of cells
and machines can be modeled and investigated.
For any cell,machine or transport system to be
considered the designer just plugs its model on
the framework and the rest of the system does
not change.

The framework consists of the specification of
the location for transport, production entities,
and the definition of possible restrictions and the
relationship between the entities. For Figure 2 the

Machine 1

Machine 2

C
e
ll
 1

Machine 3

Machine 4

C
e
ll 2

FMST
ra

n
s
p

o
rt R

o
u

te

F
o
rk

lift

Conveyor
Belt

Input buffer

Output buffer

Fig. 1. Flexible manufacturing system.

Manufacturing#1

M Prime

Transport#3 Machine#4

ForkLift ConvBelt Machine1#

TranspToCellIn
TranspToMachineIn

MTOM

CTOC

TranspToCellOut

CTOO
Mach

ProcessTransp1 ProcessTransp2 Mach1Exec

Fig. 2. HCPN hierarchy for the FMS.

hierarchy of the model is shown. In this figure, the
Manufacturing page is the main level of the model. In
this page there are several substitution transitions
to Transport page such as, for example, CTOO, CTCO,
TranspToCellIn, and one to Machine page, Mach. The
hierarchy mechanisms of colored Petri nets make
possible to define substitution transitions that
are replaced by another CPN model. It allows
the definition of hierarchies in the framework
modeling specific types of resources, or transport
entities, keeping the structure of the hierarchical
upper level unchanged and characterizing a top-
down modeling. The realization of the framework
as a HCPN model is shown in Figure 3, and the
Manufacturing page model shown in Figure 2.

Using this generic model, it is transparent the
way how the entities are modeled. Then, an FMS
system is modeled as a cell structure that has one
or more machines, a production sequence and a
transport sequence. The production sequence de-
fines the resources needed to have a final product.
The transport sequence defines the requests of
transport entities to execute an specific produc-
tion sequence to produce a product. The system
can process several different parts or several iden-
tical parts at the same time.

The description of the places and the transitions
in Figure 3 are defined as follows. The meaning
of the places are: SystemIn, System input buffer;
CellIn, cell input buffer; MachineIn, machine input
buffer; MachineOut, machine output buffer; CellOut,
cell output buffer; SystemOut, system output buffer;
MachToMach, request of transport from the machine
output to the machine input, in the same cell;

SystemIn

Part

np‘(manufact,0,0,IC,[CM,MC,CO],sequence)

CellInPart

MachineInPart

TranspToCellIn

H

TranspToMachineIn

H

CellToOut

Part

SystemOut

Part

CellOut Part

MachToCell Part

CellToCell

Part

MachTOMach

Part

MachineOut

Part

MachToCellChoice

[transp <> MM]

CellToOutChoice

[transp<>CC]

CTOO

H

CTOC

H

MachToMachChoice[transp=MM]

Mach

H

MTOM

H

TranspToCellOut

H

CChoice

[transp = CC]

part

(manu,idcell,mach,
transp,tseq,pseq)

(manu,idcell,mach,
transp,tseq,pseq)

part

part

(manu,idcell,mach,
transp,tseq,
pseq)

part

(manu,idcell,mach,
transp,tseq,pseq)

Fig. 3. HCPN framework for FMS.

MachToCell, request of transport from the machine
output to the cell output; CellToCell, request of
transport from the cell output to the cell input;
CellToOut, request of transport from the cell output
to the system output.

The meaning of the transitions are:TranspToCellIn,
transport from the system input to the cell input;
TranspToMachineIn, transport from the cell input to
the machine input; Mach, machines; MTOM, trans-
port from the machine output to the machine
input, in the same cell; TranspToCellOut, transport
from the machine output to the cell output; CTOC,
transport from the cell output to the cell input;
CTOO, transport from the cell output to the sys-
tem output; MachToMachChoice, choice of transport
from the machine output to the machine input,
in the same cell; MachToCellChoice, choice of trans-
port from the machine output to the cell output;
CChoice, choice of transport from the cell output to
the cell input; CellToOutChoice, choice of transport
from the cell output to the system output.

The transition Mach is a substitution transi-
tion to the interface of the framework with
the models of machines. The transitions Transp-

ToCellIn, TranspToMachineIn, MTOM, TranspToCellOut,
CTOC, and CTOO, are substitution transitions to
the interface of the framework with the models of
transport entities. There are different transitions
for the transport system because it is possible to
have different transport entities in an FMS.

The production sequence, as well as the trans-
port sequence are specified in the initial mark-
ing in place SystemIn. The transitions MachToMach-

Choice, MachToCellChoice, CChoice, and CellToOutChoice,
means a choice to determine what type of trans-
port is required at each point based on the trans-
port sequence defined in the initial marking

3. MODEL BASED PLANNING

The approach adopted on this work is to auto-
matically generate plans based on automatic sim-
ulation of the model and model checking. Using
the model described on Section 2 and the De-
sign/CPN tool it is possible to carry several differ-
ent simulations. That is because each simulation
covers one possible path for the model. There-
fore, after one or more simulations the designer
can realize a possible execution plan. A Message
Sequence Chart (MSC) for each simulation can
be automatically generated. The MSC is useful to
see in a more intuitive way the actual path of the
execution.

Once the MSC is generated the designer can easily
discover the path followed by the part on the
system (the token on the model). This path can be
a possible execution plan for the model. If it does
not make sense then the model is wrong and must
be fixed. Otherwise, the path can be considered
a correct execution plan for the model. In the
last case this plan should be verified in order to
guarantee that it holds for every possible behavior
of the model, and not only for the specific one
followed at simulation time. The verification will
be considered on Section 4.

The MSC is generated using a library for De-
sign/CPN. Thus, the designer can call functions
from a transition code region. Using HCPN and
Design/CPN it is possible to associate code to a
transition, and this code is executed each time
the transition fires. Therefore, for each plan that
the designer wants to generate it is possible to
execute functions that creates the MSC at any
specific transition or set of transitions to create a
customized MSC for each purpose.

Depending on the type of a part to be processed,
and the final desired product, a specific produc-
tion and transport sequence must be followed.
This information is specified on the initial mark-
ing of the model at place SystemIn, see Figure ref-
fig:framework. In this example, the transport se-
quence is from the system input to cell input (IC),
from the cell input to the machine input (CM),
from machine output to cell output (MC), and
from cell output to system output.

After simulation the MSC generated for the initial
marking described above is shown in Figure 4.
This example shows a complete execution plan,
but more specific plans can be generated also. For
example, suppose that the designer wants to see
the execution plan for a specific transport system.
In this case the MSC show in Figure 5 represents
the execution plan for the conveyor belt used for
the transport from the cell input to the machine
input (CM).

Using this strategy all the MSC for execution
plans can be automatically generated. Moreover,
several MSC can be generated for the same plan.
Therefore, initial design errors can be found before
a more deep, costly, and time consuming verifica-
tion strategy is performed. The main advantage
is that using formal methods one can perform
automatic simulation, in order to generate the
MSC, and also to perform model checking. The
last one is used after the designer has confidence
on the design and all generated MSC represents
correct execution plans.

4. MODEL CHECKING PLANS

In this work the verification of execution plans
is done by performing model checking to verify
whether the model models the properties spec-
ified or not. The model checking step is per-
formed using the Design/CPN and the ASK/CTL
library (Christensen and Mortensen, 1996). First,
the state space, that is called occurrence graph, is
generated for the model. The occurrence graph is
a directed graph that represents all the possible
behaviors of a Petri net model. After that, the
model checking itself is executed to verify if the
specification in temporal logic (Emerson, 1990) is
satisfied in this state space. If the specification
is satisfied, the plan is proved correct. Otherwise
there can be an error in the model.

The model checking technique is used to verify
if a model M satisfies a given specification f :
M |= f (Clarke et al., 1999). In the context
of this work the model is an HCPN, and the
specification is a Computation Tree Logic (CTL)
formula (Christensen and Mortensen, 1996).

Considering the examples illustrated in Section 3
the temporal logic formulas can be specified as
follows. Each CTL formula is constructed using
atomic propositions and modal and temporal con-
nectors. The atomic propositions are abstractions
about the marking, for example, of the model.
Suppose, for the complete execution plan, that
proposition P1 is evaluated to true when there is
a part (token) in the system input and a request
for a transport from the system input to the cell
input (IC) in place SystemIn of the model shown
in Figure 1. Suppose also that the proposition
P2 is evaluated to true when the part (token)
is in place CellIn. Therefore, the CTL formula to
verify if it holds for every possible behavior of the
model is: AG(P1 → AF(P2)). The meaning of
this formula is that for all paths, in all states, if
P1 is true, then P2 will be eventually true at some
state for all paths.

By following the same reasoning it is possible
to define atomic propositions for all intermediate
state of the execution plan shown in Figure 4,
and to construct the formula to verify it. Suppose
that P3 is true when a transport request (CM)
is in place CellIn and P4 when the token is in
place MachineIn. Then, AG(P3 → AF(P4)) can
be used to prove that all requests in the input of
the cell will be treated and the result is that the
token will be in the right place, the machine input.
The following formula is used to verify the overall
execution plan:

AND((AG(P1 → AF(P2))), (AG(P3 → AF(P4))), ...)(1)

It is important to note that the complexity of
the formula to prove the plan depends on the
level of detail need at a given point of the design.
For example, the designer can prove first the
initial and final point, that is, P1 is a request
at system input, and P2 is a token at system
output. Then, it is possible to refine the proof
to include intermediary points, as in Equation 1.
After, another possibility is to prove also that not
only the path is correct but also that it is followed
in the correct way. That is, the execution plan
is not only the path, but also how the path is
executed. Therefore, the designer is now in the
point to prove that the transport requests are
handled in a correct way.

In Section 3 the execution plan for the conveyor
belt request is illustrated in Figure 5. Based on
this plan, and on the model shown in Figure 3 it
is possible to identify and to specify the atomic
propositions to prove the plan, as discussed above
for the overall plan. Therefore, it is also necessary

Execution Flow (1)

Manufacturing Transport Fork Lift

Fork Lift

Fork Lift

Conveyor Belt

Conveyor Belt

Conveyor Belt

Machine

Machine 0

Transport IC

Transport Fork Lift Selected

Transport Fork Lift Done

Transport IC Done

Transport CM

Transport Conveyor Belt Selected

Transport Conveyor Belt Done

Transport CM Done

Machine 0

Machine 0 Done

Transport MC

Transport Conveyor Belt Selected

Transport Conveyor Belt Done

Transport MC Done

Transport CO

Transport Fork Lift Selected

Transport Fork Lift Done

Transport CO Done

Fig. 4. A transport execution plan (MSC). Execution Flow (1)

Manufacturing Transport Conveyor Belt

Conveyor Belt

Fork Lift

Transport CM

Conveyor Belt Selected

Conveyor Belt Done

Transport CM Done

Fig. 5. Conveyor belt execution plan (MSC).

to specify atomic propositions for the Transport

page in Figure 2. This is not shown in this paper
for the sake of space. But it consists of the decision
mechanism to select a proper transport entity
based on the request. Finally, Equation 1 can be
expanded to include these new propositions.

5. RELATED WORK

Petri nets have been widely used in the domain of
FMS domain. (Proth and Xie, 1997; Dicesare et
al., 1993; Desrochers and Al-Jaar, 1994; Zhou and
Venkatesh, 1999). In most cases low level Petri
Nets are used, and thus resulting in models that
are either too simple or to complex in terms of
description. In the context of this work HCPN is

used because it is possible to have more organized
and compact models based on this kind of Petri
Net. These factors favor the modeling and analyze
of complex systems with complex features, such
as FMS, in an easier way. Moreover, they do
not emphasize execution plans, neither model
checking. The first has a critical impact in FMS
design and control, and the last is very important
for dependability.

In the context of planning, the model check-
ing approach has been used to verify plans for
agents in the multiagent domain based on var-
ious formalisms. In (Jensen and Veloso, 2000)
it is proposed an Ordered Binary Decision Di-
agram based planning framework for multiagent
and nondeterministic domains. In (Xu et al., 2002)
it is presented an approach for modelling and

verification of multiagent behaviors using Predi-
cate/Transition Nets. In (Xu and Shatz, 2001) G-
net is extended for modelling inheritance of agent
classes in multiagent systems, which provides a
clean interface between agents with asynchronous
communication ability and supports formal rea-
soning.

6. FINAL REMARKS

In this paper an approach for automatically gen-
erate and verify plans for Flexible Manufactur-
ing Systems (FMS) is introduced. Hierarchical
Coloured Petri Nets (HCPN) are used for formal
specification. The HCPN models are automat-
ically simulated and Message Sequence Charts
(MSC) are generated for each simulation. These
MSC can be viewed as the execution plan for the
MSC. After the designer is confident on the plans
generated by simulation, the verification can be
performed to proof that the plans hold for every
possible behavior of the model. The verification
is done using model checking. The Design/CPN
tool set is use for edition and simulation of the
HCPN models, and the ASK/CTL library is used
for model checking.

The approach introduced in this paper is impor-
tant for the FMS domain because it introduces
a formal analysis that promotes dependability.
Using HCPN complex models can be developed
to match the complexity of nowadays FMS. More-
over, the execution plan verification based on a
formal, and automatic approach is a contribution
to this domain because the constant changes to
systems can be captured by the model, and the
execution plans can be proved to be correct.

ACKNOWLEDGEMENTS

The first two authors are with the Graduate Pro-
gram in Electrical Engineering, Federal Univer-
sity of Campina Grande (COPELE/UFCG). The
research reported in this paper is partially sup-
ported by grants 305110/2002-0 and 200365/2004-
5 from the Brazilian National Research Council
(CNPq), a scholarship from CAPES for the first
author and a scholarship from CNPq for the sec-
ond author.

REFERENCES

Christensen, S. and K. Mortensen (1996).
Design/CPN ASK-CTL Manual. Univ. of
Aarhus.

Cimatti, A. and M. Roveri (2003). Conformant
Planning via Symbolic Model Checking. In
JAIR pp. 305–338.

Clarke, E., O. Grumberg and D. Peled (1999).
Model Checking. The MIT Press.

Desrochers, A. and R. Al-Jaar (1994). Applica-
tions of Petri Nets in Manufacturing Sys-
tems: Modeling, Control, and Performance
Analysis. IEEE Press.

Dicesare, F., Harhalakis, G., Proth, J.M., Silva,
M. and Vernadat, F.B., Eds. (1993). Practice
of Petri Nets in Manufacturing. Kluwer Aca-
demic Pub.. London.

Emerson, E. Allen (1990). Temporal and modal
logic. In: Handbook of Theoretical Computer
Science (jan Van Leeuwen, Ed.). Vol. B:
Formal Models And Semantics. Chap. 16,
pp. 995–1072. Elsevier Science.

Jensen, K. (1992). Coloured Petri Nets: Basic
Concepts, Analysis, Methods and Practical
Use. EACTS – Monographs on Theoretical
Computer Science. Springer-Verlag.

Jensen, K. (1999). Design/CPN 4.0. Univer-
sity of Aarhus, Denmark, http://www.
daimi.aau.dk/designCPN/.

Jensen, Rune and Manuela Veloso (2000). OBDD-
based Universal Planning for Multiple Syn-
chronized Agents in No n-Deterministic Do-
mains. In: Proceedings of the Fifth Inter-
national Conference on Artificial I ntelli-
gence Planning Systems. Breckenridge, CO.
pp. 167–176.

Pistore, M. and P. Traverso (2001). Planning
as Model Checking for Extended Goals in
Non-deterministic Domains. In: Proceedings
of IJCAI’01. pp. 479–486.

Proth, J. and X. Xie (1997). Petri Nets : A Tool
for Design and Management of Manufactur-
ing Systems. John Wiley & Sons. New York.

Silva, L., A. Perkusich, H. Almeida and E. Costa
(2004). A Formal Approach for the Verifi-
cation of Multiagent Plans based on Model
Checking and Petri Nets. In: Proceedings of
SELMAS/ICSE’04. Edinburgh, UK. pp. 145–
151.

Silva, L. and A. Perkusich (2004). A Systematic
And Formal Approach to the Specification
of Flexible Manufacturing Systems Reusing
Coloured Petri Nets Models. In: Proceedings
of INCOM/IFAC’04. Salvador, Brazil.

Xu, Dianxiang, Richard Volz, Thomas Ioerger
and John Yen (2002). Modeling and Ver-
ifying Multi-agent Behaviors using Predi-
cate/Transit ion Nets. In: Proceedings of
the 14th international conference on Soft-
ware Engineering and knowledge engineering.
ACM Press. pp. 193–200.

Xu, H. and S. M. Shatz (2001). A Framework for
Modeling Agent-Oriented Software. In: Pro-
ceedings of the 21st International Conference
on Distributed C omputing Systems (ICDCS).

Zhou, M. and K. Venkatesh (1999). Modeling,
Simulation, and Control of Flexible Manu-
facturing Systems: A Petri Net Approach.
Wourd Scientific.

