

OBJECT-ORIENTED FRAMEWORK FOR THE
DESIGN OF HOME/BUILDING AUTOMATION SYSTEMS

Jair J. Araujo1, Carlos E. Pereira2

Informatics Institute, UFRGS / Federal Center of Technological Education of Pelotas1
Robotics, Automation and Control Group, Electric Engineer Department, UFRGS2

E-mails: jonko@inf.ufrgs.br/jonko@cefetrs.tche.br1, cpereira@eletro.ufrgs.br2

Abstract: The increasing demand on functionalities in new home and building automation
systems leads to a considerable complexity increase both in the development as well as in
the operation and maintenance of these systems. The major challenge is how obtain
systems entirely integrated from isolated devices and subsystems. It is believed that an
important stage to assess the actual need of this integration is to project an automating
system without a specific technological focus, which does not occur nowadays. Due to
the lack of supporting tools for the project, the stages of specification and project are
generally focused on the available technology for implementation. This article aims to fill
in this gap by specifying an object-oriented framework for the development of
applications in the building automation, enabling the modelling of the systems regardless
of the technology it will use, leaving this mapping for the last stage of the project.
Copyright © 2005 IFAC

Keywords: building automation, home automation, object-oriented, framework.

1. INTRODUCTION

Recent advances in electronics, microprocessors, and
software, have considerably influenced the
development of both industrial as well as home and
building automation systems (HBAS) over the past
years. While previous automation systems
architectures were mostly centralized and not very
flexible, modern industrial and home/building
automation systems are highly decentralized and
consist of autonomous, microprocessor-based
devices, which are able to locally process
information and make decisions. Such flexible,
adaptive and even considered “intelligent”
automation systems rely heavily on a distributed
computer-based infrastructure, where smart sensors
and actuators, and other automation devices can
interact and communicate with each other using
industrial protocols.

The use of this technology in modern home and
building automation systems has positive benefits in
terms of overall system’s efficiency, reliability, and

adaptive behaviour. However it has also considerably
increased the complexity of design, operation, and
maintenance activities. Moreover, the ability of
smoothly integrating appliances from different
vendors in order to achieve a real interoperability is
still a dream, despite the attempts done by different
organizations and many communication models and
protocols for HBAS have been proposed over the last
years. Examples are BACNET (SWAN, 2005),
Lonworks (ECHELON, 1998), EIB (EIBA, 1999),
HomePlugandPlay (CIC, 1998), just to name the
most known.

Many authors have proposed distinct strategies to
solve the interoperability problem by using runtime
infrastructures, such as middleware (CHO, 2002;
MOON, 2002). Others studies focus on the human-
machine interfaces and try to incorporate
“intelligence” in home appliances, with the aim that
through a direct interaction among devices users
goals can be achieved. Examples of such strategies
are the European projects EMBASSI (EMBASSI,
2005) and Dynamite (DYNAMITE, 2005). These

projects aim at enhancing the intuitive interaction
with tecnological systems by providing intelligent
assistance, multimodal interaction, and
anthropomorphic user interfaces within a unified
framework.

Despite of the several advances in the area of HBAS,
there is a clear lack on tools and methods that allow
engineers to conceive HBAS applications with focus
on systems’ functionalities rather than on low level
implementation and configuration details.

This work presents an object-oriented framework for
the design of HBAS, which aims to fill this gap. It
includes a class library and application profiles for
typical activities in the area of building automation,
such as HVAC control, energy management, etc. It
also takes into account the different viewpoints to be
considered when developing a HBAS, establishing a
clear separation between logical functionalities, the
appliances on which these functionalities can be
executed, the physical location of the appliances
inside a building and finally the communication
protocols and technologies with which the system
will be implemented.

The term “framework” is adopted with the same
semantic as proposed by Gamma (GAMMA et. al,
2000) a framework is a collaborative class set which
enables the re-use of the project to a specific
software’s class. It defines previously the
architecture of application and the responsibilities of
classes and objects in order to reduce the projects’
decisions.”

This paper is divided as follows: section 2 gives an
overview on the proposed framework; section 3
describes the proposed design workflow and in
section 4 conclusions are drawn and future work
activities are signalled.

2. THE PROPOSED FRAMEWORK

This approach outlines the building automation
system design in three stages:

��First, the objects and subsystems that model a
HBAS are defined. These objects aim to
represent the most common functionalities

present in HBAS and they are called logical
devices;

��In the sequence, logical design is carried on by
(re-)using classes and application profiles
available in the framework;

��Then, physical devices, corresponding to
commercially available home appliances are
selected. Logical devices previously selected are
then mapped to these physical appliances which
will constitute a distributed runtime infra-
structure to execute the designed HBAS.

The proposed framework uses a foundation the
Reference Model for Open Distributed Processing -
RM-ODP as proposed in (ISO/IEC, 1995). The RM-
ODP is the result from a group work of the ISO/ITU
to establish a framework for development of
multiplataforma large-scale heterogeneous
distributed systems. It defines five viewpoints for
representation of an open distributed system:

��enterprise view: whose objective is to specify the
objects and the restrictions of a specified system;

��information view: this view has the concepts to
allow the specification of information meaning.
The information represents the data that needs to
be stored and processed in the system;

��computational view: it describes the system as a
set of objects which interacts by interfaces;

��engineering view: whose objective is to define the
computational structure which supports the
transparencies in order to allow the distribution.

��Technology view: it is associated with the choice
of hardware and software technology that is
needed to make the system.

The starting point for defining the Framework
proposed in this paper was a thorough analysis of
several open standards for HBAS. The goal was to
identify common objects in different protocols in
order to specify a minimum object set, which can be
mapped for different technologies. Table 1 shows
common objects as proposed in some of the cited
protocols. The last column to the right depicts some
of classes that have been defined in this work.

Table 1 - Equivalence among the object model by some protocols and the classes of the Framework proposed

EIB-Type_Id (dec)
EIB Object types

BACnet ID(dec)
BACnet Object types

HomePnP ID(hex)
HomePnP Object types

Model
(proposed)

0 - Device Objec 8 - Device Object 01 - Node Control PhysicalObject
11 - File 10 -File 16 - Data Memory Persistent
100 - Analogue-Input 0 - Analogue-Input 08 - Analog Sensor AnalogSensor
101 - Analogue-Output 1 - Analogue-Output 07 - Analog Control AnalogActuator
102 - Analogue-Value 2 - Analogue-Value Scene
103 - Binary-Input 3 - Binary-Input 06 - Binary Sensor BinarySensor
104 - Binary-Output 4 - Binary-Output 05 - Binary Switch BinaryActuator
106 - Counter 1C - Counter/Timer Controller
107 - Loop 12 - Loop 0A - Matrix Switch Controller
108 - Multistate-Input 13 - Multistate-Input 10 - Multi-position Sensor MultistateSensor
109 - Multistate-Output 14 - Multistate-Output 09 - Multi-position Switch MultistateActuator
 6 - Calendar Calendar
 17 - Schedule Scene
 15 - List Memory Persistent
 10 - Display UserInterface
 11 - Medium Transport Channel
 14 - Keypad UserInterface
 1D - Clock Clock

Based on this comparative analysis, a class
hierarchy, which correspond the information view at
RM-ODP, was proposed.
Other common characteristic among several
protocols is the specification of application profiles
in order to standardize a common structure that can
be used in the devices of different vendors to
guarantee interoperability among products of
different suppliers. This corresponds to the “profiles”
concept in LonWorks and EIB protocol, the
“context” in the HomePnP and the concept of
“groups” in UPnP protocol (MICROSOFT, 2000).

3. FUNCTIONALITIES DEFINITION

Based on these concepts, subsystems were identified
and incorporated to the proposed framework. These
subsystems include typical functionalities in HBAS,
such as cooling and heating, luminosity control,
access control, and so on. Similar functionalities are
grouped together and form subsystems.

Subsystems deal with different variables,
corresponding to important information for the
HBAS, which are related to environment under
control (temperature, luminosity, occupation, energy
consume, etc.), timing information (date, timetable,
intervals, delays, etc.) or that can be related to users
(login, notification, configuration, etc.).

These variables have specific attributes in conformity
with their type (resolution, value band, etc.) and they
can be manipulated differently according to
functionalities associated with each variable and also
according to control strategy adopted for the
environment.

The necessary subsystems to implement a HBAS
will depend on the functionalities to be controlled. In
the present framework the following subsystems are
defined:

��Supervisory: handles all activities related to user
interacting (login, notification, configuration, etc)
and also to data storage and recovery
(configuration, events, alarms);

��Lighting control: allows the environmental
lighting control for different use conditions;

��Intrusion control: responsible for identifying
unauthorized access to locations and appliances;

��HVAC control: allows the control of temperature,
humidity and ventilation in a environment,
according to predefined conditions;

��Access control: responsible for users
identification and authentication in order to allow
access to restrict areas;

��Blind control: responsible for controlling of
curtains, shutters, gates, etc;

��Fire controls: it allows control the environmental
conditions relatively to fire control (high
temperature, smoke, etc.) in order to prevent
people and installations to be put at risk.

UML Use Case diagrams were created for all
subsystems with their functionalities.

4. METAMODEL DEFINITION

The next modelling stage corresponds to specifying
the objects which will compose each subsystem and
how they relate to each other. It is necessary to
define the concepts and structures which will be used
to represent and store relevant information to a
HBAS. This stage corresponds to information view
in the RM-ODP.

The main concept adopted to represent the
information of HBAS is logical device. A logical
device corresponds to a device that represents a
logical functionality. It has typical attributes
according to this functionality, regardless of how it
will be implemented afterwards.

A class hierarchy was constructed from the
identification of usual objects among different
studied protocols (table 1) and the analysis of typical
building and home variables (functionalities).

The root of the model, according to figure 1, are the
classes LogicalDevice, Subsystem and
SimpleDevice. They implement the pattern
Composite [9]. This allows to represent a system
with any number of subsystems and also to model a
subsystem with any number of devices.

The type definition proposed in this framework is
done according to data types defined by XML (W3C,
2005). This standard is independent from the
programming language. The choice of methods and
attributes was done according to the definition of the
attributes and methods of open protocols, previously
mentioned.

A SimpleDevice may have one or more logical
connections. Different types of connections,
according to the definitions of the RM-ODP, can be
represented with the specialization of the class
Channel.

The SimpleDevice class was specialized in order to
allow the modelling of different functionalities that
represent the HBAS. This class was specialized in
the classes ProcessInterface, Controller,
UserInterface, ComunicationInterface and Persistent,
each one representing a set of typical functionalities
of the application.

The ProcessInterface class has the goal of modelling
entities related to the physical process. It was
specialized in the class Sensor, that is responsible for
representing the process input variables and Actuator
to represent the process output variables. The Sensor
class was specialized in BinarySensor, AnalogSensor
e MultistateSensor and the class Actuator in
BinaryActuator, AnalogActuator and
MultistateActuator.

Fig 1 – General view of the Framework’s classes.

The class Controller allows the modelling of process
control functions. The class UserInterface represents
different man-machine interfaces, which can be a
data input, (such as a keyboard, a mouse or a
microphone) or a data output (such as a display, a
speaker or a video).

The class Persistent has the goal of modelling
persistent data, such as need for user authentication
(login, password, etc), music, videos, etc.

Finally, the last class CommunicationInterface has
the goal of representing network components.
Specializations of this class are used to model the
network as a subsystem, using the same concepts
which were used for device modelling.

Other typical characteristic of HBAS is that they may
execute pre-determined procedures according to a set
of preconditions previously established. In order to
handle these functionalities, the concept of scene was
adopted and the classes Scene, Precondition e
Procedure besides the classes Calendar and Clock
were specified. Scenery represented by the class
Scene, associates preconditions that must be valid to
activate the scene and procedures that will be
activated when the scene is active. In order to solve
the possible conflicting problem among different
active scenarios, priority layers for different systems

have been defined, using a similar concept to the
adopted by BACnet.

5. THE DEFINITION OF LOGICAL DEVICES
AND THEIR INTERACTION

In the next view of the system the different types of
objects which compose each subsystem and their
interaction should be specified. This stage is defined
as computation viewpoint in RM-ODP. In this
framework, the computational objects are called
logical devices.

Figure 2 presents the logical devices, which were
defined for HVAC subsystem. These devices were
chosen according to functionalities, which need to be
represented, and they correspond to instances of the
classes defined in the previous stage.

The multiplicity adopted in the composition allows
representing the systems with different complexity.
In this step, the type and the direction of the
information flow among the computational objects
should also be defined. UML Collaboration diagrams
were defined for all subsystems in order to represent
the relationship among the logical devices specified
for each subsystem.

Fig 2 – Logical Devices of the HVAC

6. TECHNOLOGICAL MAPPING

In the next view of RM-ODP, the computational
objects are mapped to engineering objects and the
mechanisms which will provide transparency are
defined. In this work a new technology will not be
specified, so the modelling of concepts of this view is
unnecessary because the target technology will
provide this support.

Then at fourth and last modelling stage, each of the
logical devices, defined in the previous stage, will be
mapped to physical devices for the target technology,
available for implementing the HBAS. Each physical
device may contain one or more logical devices,
according to functionalities supported by the chosen
hardware and it will receive a physical and a network
location.

In order to enable this mapping, physical devices of
different suppliers should have their functionalities
mapped, according to the concepts proposed in this
framework, to compose a device library. Based on
this library the device that better matches the desired
functionality should be selected.

The logical connection among logical devices will
correspond to an internal connection when the objects
are inside a same node, or it will correspond to a
network connection when it is made among different
physical devices.

The final result will be the physical model of a
HBAS. The configuration tool will then have to
import this specification and to automatically
configure the final system. In order to ease this task, a
XML files describing appliances information are
adopted.

7 DESIGN METHODOLOGY SUPPORTED BY
PROPOSED FRAMEWORK

The use of the framework previously specified
divides the design of a HBAS into three main steps.

The first step corresponds to problem domain analysis
and requirements specification. In this stage, the
desired functionalities and system’s behaviour are
specified based on user requirements. It is necessary
to concentrate on “what” the system should execute
and not on “how” this should be done.

The second step deals with logical design. The
functionalities and the behavior previously specified
are mapped to functionalities of the subsystem
specified in the framework and the necessary logical
devices to represent these subsystems are selected.
Figure 3 depicts this stage.

Fig. 3 – Logical Design: selection of logical devices.

In the third step logical devices are mapped to
physical devices which support the functionalities
specified and logical connections among devices are
mapped to physical connections according to
specifics technologies available for implementation.
The physical devices must be located in the network
and the physical environment. Figures 4 and 5
represent this stage.

8. CONCLUSIONS AND FUTURE WORKS

When specifying the framework proposed in this
study, the main goal was to get the definition of a
architecture on which objects were representative of
the necessary functionalities to HBAS, independently
of the technology that would be used in the
implementation of the HBAS.

Fig. 4 – Grouping Logical Devices

Fig. 5 – Physical and network Localization

Different case studies were developed in order to
validate the proposed methodology. One of the case
studies deals with the integration of sub-systems from
different vendors: (i) a HBAS controller with light
and temperature control modules produced by the
company Homeystems (HOMESYSTEMS, 2005), (ii)
a HVAC sub-system manufactured by Springer-
Carrier and (iii) an image processing system for
automatic recognition of car licenses to perform
access control. All these sub-systems are based on
distinct communication and embedded
hardware/software architectures and the framework
should minimize integration problems due to low
level implementation details by using the proposed
object models.

So far, the proposed class library has proven to be
very useful to represent (at an abstract while yet well
defined level) the functionalities and structure of the
distinct sub-systems. Preliminary results have been
quite encouraging, since the proposed class hierarchy
allowed an easy mapping of concepts handled by the
different tools, easing the identification of which
modules should be modified in order to allow

integration. Moreover, by using the proposed class
library, missing concepts in the HomeSystems were
identified and were incorporated by system designers,
which recognize the usefulness of these concepts for
HBAS. A software tool to support the framework
proposed in this paper is under implementation. In the
first stage it may allow the representation of logical
design in XML files. Afterwards it will implement
filters to transform this file to a format that can be
imported by configuration tools of a target
technology.

REFERENCES

SWAN, Bill. The Language of BACnet®-Objects,
Properties and Services. Alerton Technologies
Inc.13p.<http://www.gopolar.com/BACnet/
articles.html>

EIBA. Introduction to the System (1999) European
Installation Bus Association.. 36p
<http://www.georg-luber.onlinehome.de/data/
introduc.pdf >

ECHELON CORPORATION. Introduction to the
LONWORKS System. (1999).
<http://www.echelon.com/support/documentatio
n>

CIC. HomePnPTM Specification. (1998) CEBus
Industry Council.. 369p.
<http://www.cebus.org/Files/ hpnp10.zip>

CHO, Yean Song. Framework for the Composition of
the Home Appliances based on the
Heterogeneous Middleware in Residential
Networks. (2002) In: IEEE on Consumer
Electronics, 3, pp. 484-489.

MOON, Kyeong-Deok; LEE, Young-Hee; SON,
Young-Sung. et. all. Universal Home Network
Middleware Guaranteeing Seamless
Interoperability among the Heterogeneous Home
Network Middleware. (2002) In: IEEE on
Consumer Electronics, 3,. pp. 546-553.

EMBASSI. The EMBASSI-project.
<http://www.embassi.de/ewas/ewas_frame.html>

DYNAMITE. The dynAMITE project.
<http://www.igd.fhg.de/igd-a1/amiatini/
projects/self_organization/dynamite.html>.

GAMMA, E.; HELM, R.; JOHNSON, R. ett all.
Design Patterns. (2000) Addison-Wesley. 364 p.

ISO/IEC 10746. Open Distributed Processing -
Reference Model. (1995) International Standard..

MICROSOFT. Universal Plug and Play Device
Architecture. (2000) Redmond.
<http://www.upnp.org/resources/documents.asp>

W3C. XML Schema Part 2: Datatypes. (2001) The
World Wide Web Consortium Recommendation.
137p. <http://www.w3.org/TR/xmlschema-2/>.

HOMESYSTEMS .<http://www.homsystems.com.br.

