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Abstract: In this work, we consider nonlinear systems with input constraints and
uncertain variables, and develop a robust hybrid predictive control structure that
provides a safety net for the implementation of any model predictive control
(MPC) formulation, designed with or without taking uncertainty into account.
The key idea is to use a Lyapunov–based bounded robust controller, for which
an explicit characterization of the region of robust closed–loop stability can be
obtained, to provide a stability region within which any available MPC formulation
can be implemented. This is achieved by devising switching laws that orchestrate
switching between MPC and the bounded robust controller in a way that exploits
the performance of MPC whenever possible, while using the bounded controller
as a fall–back controller that can be switched in at any time to maintain robust
closed–loop stability in the event that the predictive controller fails to yield a
control move (due, for example, to computational difficulties in the optimization
or infeasibility) or leads to instability (due, for example, to inappropriate penalties
and/or horizon length in the objective function). The implementation and efficacy
of the robust hybrid predictive control structure are demonstrated through
simulations using a chemical process example. Copyright c©2005 IFAC.
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1. INTRODUCTION

Stabilization of nonlinear systems subject to un-
certainty and manipulated input constraints is a
fundamental control problem that has been the
subject of significant research work. One of the
control methods suited for handling constraints
within an optimal control setting is model pre-
dictive control (MPC). Numerous research studies
have investigated the stability properties of model
predictive controllers for systems without uncer-
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tainty (see, for example, the review paper (Mayne
et al., 2000)).

The problem of analysis and design of predic-
tive controllers for uncertain linear systems has
been extensively investigated (see (Bemporad and
Morari, 1999; Mayne et al., 2000) for surveys
of results in this area). For uncertain nonlinear
systems, the problem of robust MPC design con-
tinues to be an area of ongoing research (see,
for example, (Michalska and Mayne, 1993; Magni
et al., 2003)). While min-max formulations pro-
vide a natural setting within which to address
this problem, computational problems with these



approaches are well known, and stem in part
from the nonlinearity of the model which typically
makes the optimization problem non–convex and
in part from performing the min–max optimiza-
tion over the non-convex problem. Furthermore
the robust stability guarantee in various MPC
formulations (with or without stability conditions,
and with or without robustness considerations) is
contingent upon the assumption of initial feasibil-
ity, and the set of initial conditions starting from
where feasibility and stability is guaranteed is not
explicitly characterized.

Stabilizing control laws that provide explicitly–
defined regions of attraction for the closed–loop
system have been developed using Lyapunov tech-
niques; the reader may refer to (Kokotovic and
Arcak, 2001) for a survey of results in this area.
In (El-Farra and Christofides, 2003a; El-Farra
and Christofides, 2003b), a class of Lyapunov–
based bounded robust nonlinear controllers, in-
spired by the results on bounded control origi-
nally presented in (Lin and Sontag, 1991), was de-
veloped. While these Lyapunov–based controllers
have well–characterized stability and constraint–
handling properties, they cannot, in general, be
designed to be optimal with respect to a pre–
specified, arbitrary cost function.

From the above discussion, it is clear that both
MPC and Lyapunov–based analytic control ap-
proaches possess, by design, their own, distinct
stability and optimality properties. Recently, we
proposed a hybrid predictive control structure
that employs switching between bounded control
and MPC for the stabilization of linear systems
under state (El-Farra et al., 2004b) and output
feedback (Mhaskar et al., 2004), and in (El-Farra
et al., 2004a) for nonlinear systems, subject to in-
put constraints while providing a priori (off–line)
the set of initial conditions, for which closed–loop
stability is guaranteed (through bounded control).

The presence of uncertainty, however, may alter
the stability region of the nominal controllers
(designed without taking the uncertainty into
account) or even render the closed–loop system
unstable. Furthermore, simply replacing the fall–
back controller by an appropriate robust con-
troller and implementing the same switching log-
ics proposed in (El-Farra et al., 2004b; El-Farra
et al., 2004a) may lead to switching that is too
conservative, resulting in the implementation of
the fall–back controller for almost all times. Moti-
vated by these considerations, we consider in this
work nonlinear systems with input constraints
and uncertain variables, and develop a robust
hybrid predictive control structure. The proposed
method provides a safety net for the implementa-
tion of any available MPC formulation, designed
with or without taking uncertainty into account,

and allows for an explicit characterization of the
set of initial conditions starting from where the
closed–loop system is guaranteed to be stable.
The key idea is to use a Lyapunov–based robust
controller, for which an explicit characterization of
the closed–loop stability region can be obtained,
to provide a stability region within which MPC
can be implemented. Switching laws are designed
that exploit the performance of MPC whenever
possible, while using the bounded controller to
provide the stability guarantees. The implemen-
tation and efficacy of the robust hybrid predic-
tive control structure are demonstrated through a
chemical process example.

2. PRELIMINARIES

We consider nonlinear systems with uncertain
variables and input constraints, described by:

ẋ = f(x) +G(x)u+W (x)θ(t), u ∈ U (1)

where x ∈ IRn denotes the vector of state vari-
ables, u ∈ IRm denotes the vector of constrained
manipulated inputs, taking values in a nonempty
convex subset U of IRm, where U = {u ∈ IRm :
‖u‖ ≤ umax}, ‖ · ‖ is the Euclidean norm of
a vector, umax > 0 is the magnitude of in-
put constraints, and θ(t) = [θ1(t) · · · θq(t)]T ∈
Θ ⊂ IRq denotes the vector of uncertain (possi-
bly time–varying) but bounded variables taking
values in a nonempty compact convex subset of
IRq and f(0) = 0. The vector function f(x), the
matrices G(x) = [g1(x) · · · gm(x)] and W (x) =
[w1(x) · · ·wq(x)], where gi(x) ∈ IRn, i = 1 · · ·m,
and wi(x) ∈ IRn, i = 1 · · · q, are assumed to be
sufficiently smooth on their domains of definition.
The notation Lfh denotes the standard Lie deriv-
ative of a scalar function h(·) with respect to the
vector function f(·), the notation x(T−) denotes
the limit of the trajectory x(t) as T is approached
from the left, i.e., x(T−) = lim

t→T−
x(t) and the

notation ∂Ω is used to donate the boundary of
a closed set, Ω. Throughout the manuscript, we
assume that for any u ∈ U the solution of the
system of Eq.1 exists and is continuous for all
t, and we focus on the state feedback problem
where measurements of the entire state, x(t), are
assumed to be available for all t.

2.1 Bounded robust Lyapunov–based control

Referring to the system of Eq.1, we assume
that the uncertain variable term, W (x)θ, is non–
vanishing (in the sense that the origin is no longer
the equilibrium point of the uncertain system)
and that a robust control Lyapunov function
(RCLF (Freeman and Kokotovic, 1996)), V exists.
Consider also, the bounded state feedback con-
trol law (see (El-Farra and Christofides, 2003a;



El-Farra and Christofides, 2003b; El-Farra and
Christofides, 2001) for details on controller de-
sign), u = −k(x)(LGV )T , where k(x) =

−

α(x) +

√
(α1(x))2 + (umaxβ(x))4

(β(x))2
[
1 +

√
1 + (umaxβ(x))2

]

 (2)

when LGV 6= 0 and u = 0 when LGV = 0, where

α(x) = LfV + (ρ‖x‖+ χθb‖LWV ‖)
( ‖x‖
‖x‖+ φ

)
,

α1(x) = LfV + ρ‖x‖ + χθb‖LWV ‖, β(x) =
‖(LGV )T ‖, LGV = [Lg1V · · · LgmV ] and
LWV = [Lw1V · · · LwqV ] are row vectors, θb
is a positive real number such that ‖θ(t)‖ ≤ θb,
for all t ≥ 0, and ρ, χ and φ are adjustable
parameters that satisfy ρ > 0, χ > 1 and φ > 0.
Let Π be the set defined by Π(θb, umax) = {x ∈
IRn : α1(x) ≤ umaxβ(x)} and assume that
Ω := {x ∈ IRn : V (x) ≤ cmax} ⊆ Π(θb, umax)
for some cmax > 0. Then, given any positive real
number, d, such that:

ID := {x ∈ IRn : ‖x‖ ≤ d} ⊂ Ω (3)

and for any initial condition x0 ∈ Ω, it can be
shown that there exists a positive real number
ε∗ such that if φ/(χ − 1) < ε∗, the states of
the closed–loop system of Eqs.1–2 satisfy x(t) ∈
Ω ∀ t ≥ 0 and lim sup

t→∞
‖x(t)‖ ≤ d.

Remark 1: Referring to the above controller
design, it is important to make the following re-
marks. First, a general procedure for the construc-
tion of RCLFs for nonlinear systems of the form
of Eq.1 is currently not available. Yet, for several
classes of nonlinear systems that arise commonly
in the modeling of engineering applications, it is
possible to exploit system structure to construct
RCLFs. For example, for feedback linearizable
systems, quadratic Lyapunov functions can be
chosen as candidate RCLFs and can be made
RCLFs with appropriate choice of the function
parameters based on the process parameters (see,
for example, (Freeman and Kokotovic, 1996)).
Also, for nonlinear systems in strict feedback
form, backstepping techniques can be employed
for the construction of RCLFs (Freeman and
Kokotovic, 1996). Second, given that an RCLF,
V , has been obtained for the system of Eq.1, it is
important to clarify the essence and scope of the
additional assumption that there exists a level set,
Ω, of V that is contained in Π. Specifically, the
assumption that the set, Π, contains an invariant
subset around the origin, is necessary to guarantee
the existence of a set of initial conditions for which
closed-loop stability is guaranteed (note that even
though V̇ < 0 ∀ x ∈ Π\ID, there is no guarantee
that trajectories starting within Π remain within
Π for all times). Moreover, the assumption that
Ω is a level set of V is made only to simplify
the construction of Ω. This assumption restricts

the applicability of the proposed control method
because a direct method for the construction of
an RCLF with level sets contained in Π is not
available. However, the proposed control method
remains applicable if the invariant set Ω is not a
level set of V but can be constructed in some other
way (which, in general, is a difficult task).

Remark 2: Regarding the choice of the above
controller design, we note that the problem of
designing control laws that guarantee stability
in the presence of input constraints has been
extensively studied (see, for example, (Lin and
Sontag, 1991; Teel, 1992; Liberzon et al., 2002;
El-Farra and Christofides, 2003a; El-Farra and
Christofides, 2003b)). The bounded robust con-
troller design of Eq.2, proposed in (El-Farra and
Christofides, 2003a; El-Farra and Christofides,
2003b) (inspired by the results on bounded control
in (Lin and Sontag, 1991) for processes without
uncertainty) is an example of a controller design
that (1) guarantees robust stability in the pres-
ence of constraints, and (2) allows for an explicit
characterization of the closed–loop stability re-
gion. The results of this paper are not limited to
this particular choice of controllers and any other
robust controller that satisfies (1) and (2) above,
can be used.

2.2 Model Predictive Control

The MPC approach provides a framework with
the ability to handle, among other issues, multi-
variable interactions, constraints on controls, and
optimization requirements, all in a consistent, sys-
tematic manner. For the purpose of illustrating
our results, we describe here a symbolic MPC
formulation that incorporates most existing MPC
formulations as special cases. This is not a new
formulation of MPC; the general description is
only intended for the purpose of highlighting the
fact that the robust hybrid predictive control
structure (to be proposed in the next section) can
incorporate any available MPC formulation. In
MPC, the control action at time t is convention-
ally obtained by solving, on–line, a finite horizon
optimal control problem. The generic form of the
optimization problem can be described as u =

argmin{max{Js(x, t, u(·))|θ(·) ∈ Θ}|u(·) ∈ S}
s.t. ẋ(t) = f(x(t)) +G(x)u+W (x)θ(t)
x(0) = x0, x(t+ T ) ∈ ΩMPC(x, t, θ)

(4)

where Js(x, t, u(·)) =
t+T∫

t

(x′(s)Qx(s) + u′(s)Ru(s))ds+ F (x(t+ T )) (5)

and S = S(t, T ) is the family of piecewise con-
tinuous functions, with period ∆, mapping [t, t+
T ] into the set of admissible controls, T is the
horizon length and θ is the bounded uncertainty



assumed to belong to a set Θ. A control u(·) in
S is characterized by the sequence {u[k]} where
u[k] := u(k∆) and satisfies u(t) = u[k] for all
t ∈ [k∆, (k + 1)∆). Js is the performance index,
R and Q are strictly positive definite, symmetric
matrices and the function F (x(t+ T )) represents
a penalty on the states at the end of the horizon.
The maximization over θ may not be carried out
if the MPC version used is not a min-max type
of formulation. The set ΩMPC(x, t, θ) could be a
fixed, terminal set, or may represent inequality
constraints (as in the case of MPC formulations
that require some norm of the state, or a Lya-
punov function for the process, to decrease at the
end of the horizon). This stability constraint may
or may not account for uncertainty. The stability
guarantees in MPC formulations (with or without
explicit stability conditions, and with or without
robustness considerations, and whether or not it
is a min-max type of formulation) are dependent
on the assumption of initial feasibility. Obtaining
an explicit characterization of the closed–loop sta-
bility region of the predictive controller under un-
certainty and constraints remains a difficult task.

3. ROBUST HYBRID PREDICTIVE
CONTROL STRUCTURE

The hybrid predictive controller is designed and
implemented as follows (for a mathematical de-
scription of the controller and for more details,
see (Mhaskar et al., 2005)):

• Given the nonlinear process of Eq.1, θb and
umax, design the bounded robust controller
of Eq.2, and calculate an estimate of its
stability region Ω.

• Design/pick an MPC formulation (the MPC
formulation could be min–max optimization
based, linear or nonlinear, and with or with-
out stability constraints). For convenience,
we refer to the general MPC formulation of
Eqs.4–5.

• Given any x0 ∈ Ω, check the feasibility of
the optimization in Eqs.4–5 at t = 0, and
if feasible, start implementing MPC (i.e., set
u(0) = Ms(x0)).

• If at any time, MPC becomes infeasible (t =
Tinf ), or the states of the closed–loop process
approach the boundary of Ω (t = Ts) or the
closed–loop states enter the set ID (t = TD)
then switch to the bounded controller, else
keep MPC active in the closed–loop process
until a time Tdesign.

• Switch to the bounded robust controller at
Ts, TD, Tdesign, or Tinf , whichever comes
earliest, to achieve practical closed–loop sta-
bility.

Remark 3: The purpose of switching to the
bounded robust controller after the time Tdesign
is to ensure convergence to ID and avoid possible
cases where the closed–loop states, under MPC,
could wander inside Ω without actually converg-
ing to, and staying within, ID. Convergence to ID
could also be achieved (see, for example, (El-Farra
et al., 2004b; El-Farra et al., 2004a)), by switching
to the bounded controller when V̇ ≥ 0 under
MPC. However, in the presence of uncertainty,
such a condition might be very restrictive in the
sense that it may terminate MPC implementation
too early. Note that if an MPC design is used
that guarantees robust stability for the uncertain
nonlinear process if initially feasible, it could be
implemented for all time (Tdesign can be chosen to
be practically infinity) to stabilize the closed–loop
process. The stability safeguards, provided by the
bounded controller, are still required because the
stability of any MPC formulation, robust or oth-
erwise, is based on the assumption of initial fea-
sibility, which cannot be verified short of testing,
via simulation, an initial condition for feasibility.

Remark 4: We note that while the MPC frame-
work provides a transparent way of specifying a
performance objective, the various MPC formula-
tions, in general, may not be optimal, and only
approximate the infinite horizon optimal cost to
varying degrees of success. The choice of a par-
ticular MPC design can be made entirely on the
basis of the desired tradeoff between performance
and computational complexity because the sta-
bility guarantees of the robust hybrid predictive
controller are independent of the specific MPC
formulation being used.

Remark 5: Note that the switching scheme can
be relaxed in order to take better advantage of the
MPC performance. For example, instead of using
a single backup controller, one may use a family
of fall back controllers together with the MPC, to
provide a larger region within which MPC can be
safely implemented. Additionally, multiple switch-
ings between MPC and the bounded controllers
may be orchestrated, to allow for the possibility
that the MPC, starting from a different initial con-
dition, is able to stabilize the closed–loop system
(for a demonstration, see the simulation exam-
ple; for more details, see (Mhaskar et al., 2005)).
In particular, if the closed–loop state under the
MPC starts to escape the stability region of the
fall–back controller, the fall–back controller can
be used to bring the closed–loop state trajectory
further inwards, after which the supervisor may
switch back to the MPC.



4. APPLICATION TO A CHEMICAL
REACTOR

Consider the following model of an irreversible
elementary exothermic reaction of the form A

k→
B in a well–mixed continuous stirred tank reactor:

VR
dCA
dt

= F (CA0 − CA)− k(T )CAV (6)

VR
dT

dt
= F (TA0 − T )− ∆H

ρcp
k(T )CAV +

Q

ρcp

where CA denotes the concentration of species A,
T and VR denote the temperature and volume
of the reactor, respectively, k(T ) = k0 exp

(−E
RT

)
denotes the reaction rate, where k0, E, ∆H de-
note the pre–exponential constant, the activation
energy, and the enthalpy of the reaction, respec-
tively, Q denotes the rate of heat input to the
reactor, and cp and ρ denote the heat capacity
and density of the fluid in the reactor, respectively
(the steady–state values and process parameters
can be found in (Mhaskar et al., 2005)). The
control objective is to regulate both the reactor
temperature and reactant concentration at the
(open–loop) unstable equilibrium point by manip-
ulating both the rate of heat input/removal and
the inlet reactant concentration. Defining x1 =
CA − CAs, x2 = T − Ts, u1 = CA0 − CA0s,
u2 = Q, θ1(t) = TA0 − TA0s, θ2(t) = ∆H −∆Hn,
where the subscript s denotes the steady–state
value and ∆Hn denotes the nominal value of the
heat of reaction, the process model of Eq.7 can
be cast in the form of Eq.1. In all simulation
runs, θ1(t) = θ0sin(3t), where θ0 = 0.08TA0s

and θ2(t) = 0.5 (−∆Hnom), and the manipulated
input constraints were |u1| ≤ 1.0 Kmol/m3 and
|u2| ≤ 92 KJ/s.

A quadratic Lyapunov function was used to de-
sign the bounded robust controller of Eq.2, using
χ = 1.01, φ = 0.0001, and ρ = 0.01. The term
β2 in the denominator of the control law of Eq.2
was replaced by the number ν = 0.001 close to the
origin to alleviate chattering of the control action
(note that for this example, the denominator term
β2 = 0 if and only if x = 0). The set of non-
linear ODEs was integrated using the MATLAB
solver, ODE45, and the optimization problem in
MPC was solved using the MATLAB nonlinear
constrained optimization solver, fmincon.

In the first scenario, a nominal nonlinear MPC
formulation, without stability constraints, is used
as part of the robust predictive control structure
(setting ΩMPC = IRn, F (x(t+ T )) = 0, T = 0.02
minutes in Eqs.4–5) and with the design parame-
ter Tdesign = 10 minutes. Shortly after the initial
implementation of MPC, the supervisor detects,
at t = 0.6 seconds, that the closed–loop states are
close to the boundary of Ω(umax, θb) and therefore
switches to the bounded robust controller to stabi-
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Fig. 1. Closed–loop state trajectory: implementa-
tion of the robust hybrid predictive controller
using a nominal MPC formulation without
stability constraints (solid line) and an MPC
formulation with stability constraints, from
two different initial conditions (dashed and
dotted lines).

lize the closed–loop process (solid lines in Figures
1, 3). Note that the stability region information is
completely contained in the value of the level set
obtained at the time of the computation of the
stability region (cmax) and the supervisor reaches
this inference by simply evaluating the Lyapunov
function, and comparing it to cmax. In the next
scenario, a stabilizing formulation of MPC is used
(requiring the states to go to a small invariant set
at the end of the horizon), with a horizon length
of T = 0.02 minutes and a Tdesign = 20 minutes.
For the initial condition of the trajectory shown
by the dashed lines in Figures 1 and 3, the MPC
yields a feasible solution and drives the states
close to the origin. For the initial condition de-
picted by the dotted lines in Figures 1, 3, however,
the MPC does not yield a feasible solution, and
therefore the supervisor initially implements the
bounded robust controller, switching to the MPC
at t = 0.465 minutes, when the MPC becomes
feasible, and leads to closed–loop stability.

Finally, we demonstrate the relaxation of the
switching scheme as discussed in Remark 5 using
two Lyapunov functions. We use a nominal non-
linear MPC formulation, without stability con-
straints (setting ΩMPC = IRn, F (x(t + T )) = 0,
T = 0.02 minutes in Eqs.4–5) and with the design
parameter Tdesign = 3 minutes. Starting from
an initial condition within Ω2 under MPC, the
switching logic allows MPC to be implemented in
the closed–loop even though the states escape out
of Ω2, since they are still within Ω1 (see solid line
in Figure 2 and dashed lines in Figure 3). Note also
that in this case the nominal MPC does not en-
force the desired degree of uncertainty attenuation
(note the oscillations). After the time Tdesign has
elapsed, the supervisor implements the bounded
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Fig. 2. Closed–loop state trajectory: implemen-
tation of the robust hybrid predictive con-
troller discussed in Remark 5, using a nom-
inal MPC formulation without stability con-
straints (solid line).
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Fig. 3. Closed–loop state (top) and input (bot-
tom) profiles: implementation of the robust
hybrid predictive controller using a nomi-
nal MPC formulation without stability con-
straints (solid lines), an MPC formulation
with stability constraints, from two different
initial conditions (dashed and dotted lines)
and the relaxed switching scheme discussed
in Remark 5, using a nominal MPC formu-
lation without stability constraints (dash–
dotted lines).

controller (associated with Ω2) in the closed–loop
process to achieve practical stabilization.
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