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Abstract: In this paper, an extremum-seeking controller is developed to steer a
periodic system to orbits that maximize a functional of interest. The problem is
posed as a real-time optimal trajectory generation problem in which the optimal
orbit is computed using an extremum-seeking approach. The control algorithm
provides tracking of the optimal orbit. A drug delivery system is considered to
demonstrate the application of the technique.Copyright c©2005 IFAC
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1. INTRODUCTION

The task of extremum-seeking control is to track
the steady-state optimum of a cost functional sub-
ject to the system dynamics. Most techniques de-
veloped focus primarily on real-time steady-state
optimization where the objective function is a
sufficiently smooth function of the state variables
and/or some tuning parameters. In many applica-
tions, the search for a steady-state extremum does
not provide a viable operating policy. As discussed
in (Varigonda et al., 2004a) and (Varigonda et
al., 2004b), this situation arises in the design of
drug delivery systems where steady-state opti-
mization leads to conditions that are not thera-
peutic. The same phenomena was observed in the
study of catalytic chemical systems (Bailey and
Horn, 1971). In biological systems, the very nature
of the problem dictates operating about periodic
cycles, circadian or otherwise. Recent results (see
(Laroche and Claude, 2004) for example) have
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shown that it is possible, using knowledge of the
system dynamics, to change the cyclic behavior
of anomalous biological systems so that they can
operate normally.

The techniques employed to date are primar-
ily open-loop optimal trajectory generation ap-
proaches that rely on off-line optimization. In
(Varigonda et al., 2004b), numerical techniques
are used to compute trajectories of differentially
flat systems which maximize user-specified cost
functionals over periodic orbits. The application
to flat systems allows one to completely parame-
terize the trajectories of the system by assigning
paths in the so-called flat output space. Thus,
the dynamic optimization problem can be trans-
formed to a finite-dimensional nonlinear optimiza-
tion problem which can be solved readily.

In this paper, we consider the approach proposed
in (Guay and Zhang, 2003) to solve dynamic op-
timization problems in finite dimensional nonlin-
ear systems. As in (Guay and Zhang, 2003), a
Lyapunov-based optimization method is proposed
which uses knowledge of the model structure and



of the dynamic cost functional. We exploit the
knowledge of the model structure to parameterize
the set of admissible trajectories to maximize the
prescribed cost functional over a finite dimen-
sional set of parameters. Using a Lyapunov-based
technique, the set of parameters is updated in
real-time to achieve optimization of the dynamic
cost. The optimal trajectories are implemented
in real-time using a suitable tracking controller.
In this paper, we consider the application of this
technique to the solution of real-time dynamic op-
timization problems in differentially flat nonlinear
systems.

The paper is organized as follows. In Section 2,
we state and formulate the dynamic optimization
problem. The optimization technique and the im-
plementation of the control is discussed in Section
3. Simulation results are discussed in Section 4
which is followed by brief conclusions in Section
5.

2. PROBLEM STATEMENT

In this paper, we consider general nonlinear sys-
tems of the form:

ẋ = f(x) +
p∑

i=1

gi(x)ui(t) (1)

where the elements of f : Rn → Rn and gi :
Rn → Rn are C∞ functions, x ∈ Rn are the state
variables and u(t) = [u1(t), . . . , up(t)]T ∈ Rp is
the vector of p input variables.

The control design objective is to steer the nonlin-
ear system (1) to the trajectory which optimizes
a cost functional of the form:

J =
1
T

∫ t+T

t

q(x(τ))dτ (2)

with respect to x(τ) for τ ∈ [t, t + T ] subject
to the system dynamics (1) and the inequality
constraints,

r(x(τ)) ≤ 0, τ ∈ [t, t + T ] (3)

where r : Rn → Rm is a vector-valued smooth
function of the states. The period T , assumed
fixed, is taken as the length of the horizon con-
sidered for the cost functional.

It is assumed that the trajectories x(τ) evolve in
a compact subset Ω of <n. The cost functional J :
Ω → <+ is assumed to be a convex differentiable
function on Ω. To solve this problem, we must
consider some parametrization of the trajectories
of the system (1) over the set Ω. In this paper,
we focus on the situation where the model (1) is
differentially flat.

2.1 Flat Dynamical Systems

Differential flatness, a notion introduced by Mar-
tin (Martin, 1992), refers to the existence of so-
called flat or linearizing outputs that summarize
the dynamics of a nonlinear system. The system
(1) is said to be differentially flat if there exists
variables y = [y1, ..., yp]T given by an equation of
the form:

y = h(x, u, u̇, ..., u(ρ)) (4)

The variables y = [y1, ..., yp]T are referred to as
the flat outputs.

The main advantage of differential flatness is that
all system trajectories can be trivially defined in
the flat output space. In fact, the original system
variables x(t) and u(t) can be written as functions
of these flat outputs (y(t) or y(τ)) and a finite
number of their derivatives:

x(t) = α(y(t),y(1)(t), ....y(k)(t)) ≡ α(ȳ(t)) (5)

u(t) = β(y(t),y(1)(t), ....y(k)(t)) ≡ β(ȳ(t))

where ȳ(t) is a vector of derivatives of the flat
output of the form

ȳ(t) = [y(t),y(1)(t), ....y(k)(t)]T .

Here y(i)(t) stands for the ith derivative of y(t)
with respect to t and k is the number of derivatives
of y(t) required to represent the system in the
form (5).

2.2 Dynamic Optimization using Flatness

Using differential flatness, the set of trajectories
can be parameterized by simply choosing a suit-
able parameterization for the flat outputs. The
resulting state and input trajectories can be com-
puted directly from (5). This strategy has been
employed in many studies (see, (Varigonda et
al., 2004a), (Agrawal et al., 1999), (Mahadevan et
al., 2000), (Martin, 1992), (Murray et al., 1995),
(Oldenburg and Marquardt, 2000), (Rothfuss et
al., 1996), (Rouchon et al., 1993) and the ref-
erences therein). In the current application, we
enforce the periodicity by parameterizing the flat
output trajectories using Fourier series. In partic-
ular, we assign the highest derivative of the flat
outputs, yk(t), as

y(k)(t) = α0 +
n∑

i=1

(α1i sin(iωt) + α2i cos(iωt))(6)

where θ = [α0, α11, . . . , α1n, α21, . . . , α2n]T are the
parameters to be assigned and ω = 2π/T . The
flat outputs and their first k − 1 derivatives are
obtained by integrating (6) successively.

Using this parametrization, the cost function (2)
can be written as



J =
1
T

∫ t+T

t

q(α(θT φ(τ), . . . , θT φk(τ)))dτ (7)

where

φ(τ) =

[
1, sin(ωt), . . . , sin(nωt), cos(ωt), . . . , cos(nωt)

]T

and φk(τ) is its kth time derivative. The con-
straints can be expressed in the parameterized flat
output space as follows

r(α(θT φ(τ), . . . , θT φk(τ))) ≤ 0. (8)

In the next section, the parametrization (7) is
considered in the development of an extremum-
seeking controller.

3. EXTREMUM-SEEKING DYNAMIC
OPTIMIZATION

The objective of the controller design methodol-
ogy is to steer the system to the periodic orbit that
maximizes the cost function (7) as a function of
the parameters θ while meeting all constraints (8).

We consider the maximization of J(θ) with re-
spect to θ. We propose to encode the constraints
using an interior point method using a log-barrier
function in the cost. This leads to a modified cost
function given by

Jip =
1
T

∫ t+T

t

(
q(α(θT φ(τ), . . . , θT φk(τ))) (9)

+
m∑

i=1

µi log
(
ri(α(θT φ(τ), . . . , θT φk(τ))− εi)

)
)

dτ

where µi > 0, εi > 0 for i = 1, . . . , m are positive
constants that are tuning constants for the log-
barrier functions. We first make the following
assumption.

Assumption 3.1. The constraint set described by
(3), which is convex of the set Ω ⊂ <n, remains
convex over a set Υ in the parameter space in its
parameterized form (7).

Assumption 3.1 guarantees that the unconstrained
optimization of the modified cost Jip leads to
the constrained optimum of J(θ) as the tuning
constants µi → 0. Although this assumption can
be restrictive in practice, most applications can be
adequately solved using the proposed technique
through a suitable a priori analysis of the prob-
lem. One technique, proposed in this paper, is to
solve the optimization problem using an update
law that constrains the parameters to a convex
set.

3.1 Real-Time Optimization Technique

The basic approach is to formulate the optimiza-
tion of J(θ) using a Lyapunov based approach.
Given that the functional is convex with respect
to θ over a prescribed region Υ, we can rely on
the first order conditions for optimality given by

∇θJip(θ∗) = 0 (10)

where∇θJip(θ∗) is the gradient of Jip with respect
to θ evaluated at the minimizer θ∗. As in (Guay
and Zhang, 2003), we propose the following Lya-
punov function,

V =
1
2
‖∇θJip(θ)‖2 (11)

Note that the gradient of Jip is now a function of
a time-varying set of parameters θ(t) given by the
expression

∇θJip(θ)T =∇θJ(θ)T + (12)

1

T

∫ t+T

t

(
m∑

i=1

∂ri

∂x

∂α

∂θ

µi

(ri(α(ȳ))− εi)

)
dτ

where

∇θJ(θ)T =
1
T

∫ t+T

t

∂q

∂x

∂α

∂θ
(τ)dτ, (13)

∂α

∂θ
=

∂α

∂ȳ(t)
∂ȳ(t)
∂θ

(14)

and
∂ȳ(t)
∂θ

=
[
φ(t), . . . , φ(t)(k)

]
.

The time derivative of V is

V̇ =∇θJip(θ(t))(∇θ
2Jip(θ(t))θ̇ + Ξ(t + T )− Ξ(t))

where

Ξ(τ) =
∂q

∂x

∂α

∂θ
(τ, θ(t)) +

∂ri

∂x

∂α

∂θ

µi

(ri(α(ȳ))− εi)
,

∇θ
2Jip(θ(t)) is the Hessian of Jip evaluated at θ(t)

given by

∇2
θJip(θ)T =∇2

θJ(θ)T (15)

+
1

T

∫ t+T

t

( m∑
i=1

− µi

(ri(α(ȳ))− εi)2
∂ri

∂x

∂α

∂θ

+
µi

(ri(α(ȳ))− εi)

∂αT

∂θ

∂2ri

∂x∂xT

∂α

∂θ

+
µi

(ri(α(ȳ))− εi)

∂ri

∂x

∂2α

∂θ∂θ

)
dτ

and



∇θ
2J(θ) =

1

T

∫ t+T

t

(
∂q

∂x

∂2α

∂θ∂θ
+

∂αT

∂θ

∂2q

∂x∂xT

∂α

∂θ

)
dτ.

By the periodic nature of the choice of trajectory
parametrization, it follows that

Ξ(t + T )− Ξ(t) = 0.

We then obtain the following expression for the
derivative of V

V̇ = ∇θJip(θ(t))
(
∇θ

2Jip(θ(t))θ̇
)

. (16)

We propose the following parameter update for-
mula:

θ̇ = −kΓ−1∇θJip(θ(t))T (17)

where ρ =
∥∥∇θ

2Jip(θ(t))
∥∥

F
is the Frobenius norm

of the Hessian matrix. Clearly, the matrix Γ =(∇θ
2Jip(θ(t))− ρI

)
is by construction negative

definite such that

J̇ip = −∇θJip(θ(t))Γ−1∇θJip(θ(t))T ≥ 0. (18)

The cost functional is constrained to increase as
long as the gradient is nonzero. Note that, the rate
of change of the Lyapunov function V becomes,

V̇ =−k∇θJip(θ(t))∇θ
2Jip(θ(t))Γ−1∇θJip(θ(t))T .

The correction of the Hessian renders the rate of
change of V indefinite. In order to avoid diver-
gence of the scheme, the value of the parameters
is constrained to the convex set

ΩW =
{
θ ∈ RN | ‖θ‖ ≤ wm

}

for some wm > 0 through the use of a projection
algorithm. This algorithm is given by

θ̇ = Proj {θ, Ψ} (19)

=





Ψ, if ‖θ‖ < wm

or (‖θ‖ = wm and ∇P(θ)Ψ ≤ 0)

Ψ−Ψ
γ∇P(θ)∇P(θ)T

‖∇P(θ)‖2γ
, otherwise

where
Ψ = −kΓ−1∇θJ(θ(t))T

and P(θ) = θT θ − wm ≤ 0, θ is the vector
of parameter estimates, γ is a positive definite
symmetric matrix and wm is chosen such that
‖θ‖ ≤ wm.

The relevant properties of the projection operator,
Proj{τ}, are given in (Krstić et al., 1995)). The
purpose of the projection algorithm is to prevent
the divergence of the optimization scheme. Al-
though this can be achieved, it remains to check
whether the maximization of the cost J can still
proceed when a projection algorithm is employed.

By the properties of the projection algorithm,
the parameters are guaranteed to remain in the
convex set ΩW . Furthermore, it is also guaranteed
that the rate of change of Jip subject to the
projection algorithm (19) given as follows:

J̇ip(t) =∇θJip(θ(t))Proj {θ, Ψ} (20)

is such that

J̇ip(t) ≥ 0.

Thus, the projection algorithm plays the role of
a trust-region algorithm which limits the domain
of the trajectories prescribed by the optimization
equation (17) while ensuring that the optimiza-
tion proceeds at time increases. The restricted
update law ensures that a local maximum in J
can always be achieved over a convex set in the
parameter space.

Note that by the smoothness of the cost J with
respect to the decision variables θ, it is guaranteed
that there exists an upper bound in the magnitude
of the gradient and Hessian of J over the convex
Ωw.

The purpose of the optimization strategy is to
generate in real-time a periodic orbit of the non-
linear system (1) that maximizes the cost func-
tional Jip. The optimal periodic orbit provides a
reference trajectory that must be implemented by
the control system.

3.2 Implementation

The purpose of the optimization strategy pro-
posed in the previous subsection is to generate, in
real-time, a periodic orbit of the nonlinear system
(1) that maximizes the cost functional J . This
periodic provides a reference trajectory that must
be implemented by the control system.

Since the differential flat systems can always
be put in triangular (strict-feedback) form. Any
backstepping design (see (Krstić et al., 1995)) is
adequate to design a suitable asymptotic trajec-
tory tracking controller. In this work, a simple
Lyapunov based tracking controller was designed
to implement the optimal periodic orbit. Assum-
ing that the system has strong relative degree, the
tracking error dynamics for the closed-loop system
have a globally asymptotically tracking equilib-
rium at the origin. For more details, the author
is referred to (Rothfuss et al., 1996), (Murray et
al., 1995) and (Rouchon et al., 1993). For the sake
of brevity, the details of the implementation will
not be discussed here.

4. SIMULATION RESULTS

The example is taken from (Varigonda et al.,
2004b). A pharmacokinetic model describes the



dynamics of the drug uptake of a drug c in the
body. The system dynamics are described by the
dimensionless linear system:

ċ = −c + u, ȧ = Ka(c− a) (21)

where c is the drug concentration, a is the antago-
nist concentration, u is the drug infusion rate and
Ka is the rate constant for antagonist elimination.

The effect of the drug is monitored using the
function

E(c, a) =
c

(1 + c)(1 + a/a∗)
. (22)

The goal of the therapy is to keep the effect of
the drug within a predetermined interval [E1, E2].
With the help of a suitable weighting (or indica-
tor) function such as

I(E) =
(E/E1)γ

[1 + (E/E1)γ ] [1 + (E/E2)γ ]
, (23)

the problem is solved by finding a drug therapy
u(t) that maximizes the indicator function I(E).

Since the steady-state optimization solution typ-
ically leads to an optimal value of E that lies
outside the therapeutic range, a periodic drug
treatment u(t) is required. The problem of search-
ing for periodic orbits leads to the maximization
of the time-averaged indicator function given by

J =
1
T

∫ T

0

I(E(t))dt (24)

The optimization problem considered is

max
u(t)

J =
1
T

∫ T

0

I(E(t))dt

subject to: ċ = −c + u(t)

ȧ = Ka(c− a) (25)

c ≥ 0 , a ≥ 0 , u ≥ 0

The dynamical system (21) is differentially flat
with the flat output y = a. Differentiating the flat
outputs we obtain,

y = a, ẏ = Ka(c− a),

ÿ = −Kac + Kau−Ka2(c− a).

As a result, we obtain the following parametriza-
tion of the dynamics,

a = y, c =
1

Ka
ẏ + y,

u =
1

Ka
ÿ +

1
Ka

ẏ + y + Kaẏ.

We parameterize the trajectories of the system by
assigning the highest order derivative of the flat
output. In this case, we let

ξ̈ = θT φ(t) (26)

where

θ = [α0, α11, . . . , α1n, α21, . . . , α2n]T

and φ(t) is chosen as above.

Following the proposed technique, we consider the
maximization of the cost (25) as a function of θ
subject to,

a = ξ, c =
1

Ka
ξ̇ + ξ, u =

1
Ka

ξ̈ +
1

Ka
ξ̇ + ξ + Kaξ̇

and the constraints

ξ ≥ 0, 0 ≤ (
1

Ka
ξ̇ + ξ) ≤ 2,

1
Ka

ξ̈ +
1

Ka
ξ̇ + ξ + Kaξ̇ ≥ 0.

Using this parametrization, we evaluate the gra-
dient and Hessian of J with respect to θ. The
constraints are encoded using log-barrier func-
tions to Jip. As in (Varigonda et al., 2004b), the
system parameters are given by Ka = 0.1, a∗ = 1,
E1 = 0.3, E2 = 0.6 and γ = 10. We fix the
period to T = 12 hours. The log-barrier function
parameters are set to µ1 = 0.01 and ε1 = 0.001 for
the three inequality constraints. For the approx-
imation, 10 harmonic frequencies were used. The
tracking controller for this system is given by,

u =
1

Ka
(Ka + K2

a(c− a)−

k1(y − ξ)− k2(ẏ − ξ̇) + ξ̈)

where k1 = 1 and k2 = 1. The search region
in the parameter space is limited to the convex
set Ωw =

{
θ ∈ RN | ‖θ‖ ≤ 10

}
. The gain in the

parameter update law is set to k = 100. The initial
conditions for the simulation are a(0) = c(0) = 0.5
and θ(0) = [0.7, 0, . . . , 0]. The initial estimates of
the parameters yield a feasible trajectory.

The simulation results are shown in Figures 1 to
3. A maximum optimal value obtained is J =
0.3523 which compares with the results cited in
(Varigonda et al., 2004b). The state trajectories
are shown in Figure 1. The input trajectory is
given in Figure 2. The results demonstrate that
the optimum is reached and that the state and
input constraints are met. Note that the tracking
controller proposed does not formally enforce the
input and state constraints for the system. In this
case, the control system performs well. Figure
3 shows the value of the effect of the drug, E.
The periodic drug delivery strategy provides an
effective drug treatment that reaches the recom-
mended value of 0.3 at each cycle. The resulting
treatment is therefore viable, as predicted.
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Fig. 1. Closed-loop state variable trajectories, a
and c, for the real-time optimization scheme.
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Fig. 2. Control action u for the real-time optimiza-
tion scheme.
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Fig. 3. Drug effect E for the real-time optimiza-
tion scheme.

5. CONCLUSIONS

In this paper, we proposed and solved an extremum-
seeking control problem for a class of nonlinear
dynamical control systems. The system provides
a real-time optimal trajectory generation system

that optimizes cost functionals which are evalu-
ated over periodic orbits of fixed period.
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