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Abstract: Several approaches for cross-layer design, e.g., coordinating the tra-
ditionally separated layers in wireless networks, have been proposed. However,
protocols that are close to achieving the performance bounds are still lacking.
We propose three distributed algorithms for joint congestion control and resource
allocation in networks with variable capacities subject to a global resource con-
straint. Examples include spectrum assignment in wireless networks and wave-
length allocation in optical networks. For scalability, we impose the additional
constraint that nodes can only negotiate and exchange resources with their neigh-
bors. The proposed algorithms consist of two complementary approaches based
on decomposition techniques, in which congestion control and resource allocations
are performed on different time-scales. Two of the algorithms can be shown to
converge without network delays. Copyright c© 2005 IFAC
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1. INTRODUCTION

In a desire to enhance performance of wireless
networks, there has been a strong recent inter-
est in methods for coordinating the traditionally
separated networking layers. A range of optimiza-
tion methods have been devised for evaluating
the potential performance benefits of cross-layer
designs, e.g., (Johansson and Xiao, 2003) and the
references therein, but there is still a shortage of
protocols that come close to achieving these per-
formance bounds. In a step towards these goals,
we extend the approaches for analysis and design
of congestion control for the fixed Internet, e.g.,
(Low and Lapsley, 1999; Kelly et al., 1998), to
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a class of networks with variable link capacities.
We study how decomposition techniques can be
used to devise protocols that jointly optimize end-
to-end rates and resource allocation to maximize
total network utility. The complexity of this prob-
lem depends on the structure of the resource
constraints and the relationship between resource
allocation and resulting capacities. When resource
constraints are local to nodes, e.g., a total power
constraint at each node, it is relatively easy to
derive a distributed solution. In this paper we
consider the situation with a global resource con-
straint. Examples include time-slot or spectrum
assignments in wireless networks and wavelength
allocations in optical networks.

The key contributions of this paper are to demon-
strate that the cross-layer optimization problem
with a global resource constraint admits a dis-



tributed solution, and to propose two complemen-
tary approaches for achieving the global optimum.
The first approach is based on a dual decompo-
sition technique. This method uses the classical
source rate and congestion price updates of op-
timization flow control (Low and Lapsley, 1999)
together with a resource management scheme (Ho
et al., 1980) where links exchange resources with
their neighbors only. We demonstrate that this
scheme converges to the optimum. However, our
dual approach has the disadvantage that resource
allocations have to be done at a fast time-scale,
and that the resource allocation has to be per-
formed to optimality. To complement the dual ap-
proach, we propose a distributed solution inspired
by primal decomposition techniques. Contrary to
the dual approach, this scheme relies on standard
optimization flow control on the fast time-scale,
while incremental resource re-allocations are per-
formed on a slow time-scale. Using this approach
we have proposed two different algorithms, a sim-
ple algorithm solving a relaxed version of the
problem and a projection algorithm solving the
full problem. The latter algorithm can be shown
to converge to the global optimum.

2. PROBLEM STATEMENT AND NOTATION

We consider a network with L directed links
shared by P sources. To each source, we asso-
ciate an increasing and strictly concave function
up(sp) which measures the utility source p has
of sending at rate sp. We assume that data is
routed along fixed paths, represented by a routing
matrix R = [rlp] with entries rlp = 1 if source p
uses link l and 0 otherwise. The aggregate com-
munication rate on each link l is limited by its
capacity cl(ϕl). We assume that the capacities
are monotone increasing, concave functions, twice
differentiable, and that there is a network-wide
resource budget, i.e., that

∑L

l=1 ϕl ≤ ϕtot and
ϕl ≥ 0. We would like to find the combination
of source rates and resource allocation that max-
imizes the total network utility. Introducing the
vectors s =

(
s1 · · · sP

)
, ϕ =

(
ϕ1 · · · ϕL

)
, and

c(ϕ) =
(
c1(ϕ1) · · · cL(ϕL)

)
, this amounts to solv-

ing the following convex optimization problem

maximize

P∑

p=1

up(sp)

subject to Rs � c(ϕ), smin � s
L∑

l=1

ϕl ≤ ϕtot, 0 � ϕ

(1)

in the variables s and ϕ. Our developments require
two more technical assumptions: there should
exist a resource allocation ϕ̃ such that Rsmin ≺
c(ϕ̃), and the routing matrix, R, should be such
that all sources have data to send, and all links are

at least used by one source. The first assumption
simply states that the network should be able to
support all sources when they use their minimum
transmission rates; in a practical network, this will
be taken care of by an admission control policy. As
we will demonstrate in Proposition 1, the problem
(1) is equivalent to

maximize

P∑

p=1

up(sp)

subject to Rs � c(ϕ), smin � s
L∑

l=1

ϕl = ϕtot, ϕmin � ϕ

(2)

which is the formulation we will use from now on.

Our problem formulation is rather general and
different types of networks can be modelled in
this way. For example, in wireless networks with
Gaussian broadcast channels, the classical Shan-
non capacity formula gives that

cl = Wl log

(

1 +
Pl

σlWl

)

(3)

where the adjustable parameters are Wl, the as-
signed bandwidth, and Pl, the power used in the
link. Another case corresponds to distributed time
sharing in a system operating under TDMA, for
which the capacity is cl(ϕl) = ϕlctgt

3. RELATED WORK

The optimization problem (2) is convex and is
readily solved using centralized optimization tech-
niques (e.g., (Xiao et al., 2004)). In this paper,
we study how decomposition techniques can be
used to devise distributed protocols to coordi-
nate sources, routers and transmitters towards the
optimal network operation. Although the use of
decomposition techniques for devising distributed
policies has a long history in economics (see,
e.g., (Arrow and Hurwicz, 1960)), the applica-
tion to data networks is more recent Kelly et al.
(1998) and Low and Lapsley (1999). Extensions
to wireless networks can be found in, e.g., (Xiao
et al., 2004; Neely et al., 2003; Chiang, 2004).

Our solutions will make use of two distributed
optimization algorithms from the literature: op-
timization flow control (Low and Lapsley, 1999)
and center-free resource allocation (Ho et al.,
1980; Xiao and Boyd, 2003). Optimization flow
control solves the problem of distributed utility
maximization in networks with fixed link capac-
ities, and is believed to be a relatively faithful
abstraction of the operation of TCP/AQM in the
fixed Internet. The center-free resource allocation
algorithm considers distributed optimization un-
der nearest neighbor communication constraints.
These algorithms will now be briefly discussed.



3.1 Optimization flow control

Low and Lapsley (1999) address the problem of
adjusting the communication rates between nodes
in a network under fixed link capacity constraints.
In our notation, the problem is

maximize

P∑

p=1

up(sp)

subject to Rs � c, smin � s

(4)

The Lagrange dual function of this problem is

g(λ)= max
smin�s

{
P∑

p=1

up(sp) − λT(Rs − c)

}

(5)

= max
smin�s

{
P∑

p=1

up(sp) − sp

L∑

l=1

rlpλl

}

+λT c

(6)

In the dual formulation, each link is associated
with a “congestion price”, λl (a Lagrange mul-
tiplier). A key observation is that sources can
compute their optimal rate individually, based on
the total congestion price

∑L

l=1 rlpλl, using the
source rate algorithm

sp = arg max
smin≤s

up(z) − z
∑L

l=1 rlpλl (7)

To solve the dual problem,

minimize g(λ)
subject to λ � 0

one can use the projected gradient method

λl(t + 1) = [λl(t) − γ(cl −
∑P

p=1 rlpsp)]
+

where [·]+ is the projection on the positive orthant
and γ is the step length. Thus links can update
their congestion prices individually, based only on
knowledge of the local excess capacity.

3.2 Center-free resource allocation algorithms

The algorithm by Ho et al. (1980), Xiao and Boyd
(2003) solves the resource allocation problem

minimize
L∑

l=1

fl(ϕl)

subject to
L∑

l=1

ϕl = ϕtot

(8)

under the assumptions that fl are convex, twice
continuously differentiable, with the second deriva-
tive bounded below, mi ≤ f ′′

l (ϕl) ≤ ni, with
mi > 0, ni known. The optimality conditions
are 1T ϕ? = ϕtot and ∇f(ϕ?) = β?1, with 1 =
(
1 ... 1

)T
∈ R

L. Using the update rule

ϕ(t + 1) = ϕ(t) − W∇f(ϕ(t)) (9)

with 1T W = 0, the new allocation ϕ(t+1) will al-
ways be feasible. The limitation that links should

only be allowed to communicate and exchange
resources with its neighbors translates into a spar-
sity constraint on W . Ho et al. (1980) have shown
that the distributed algorithm converges to the
optimal solution if W is chosen to satisfy

W is irreducible
Wij ≤ 0

W = WT ,W1 = 0
∑

j∈N (i)

|Wij | < 1/mmax, i = 1, ..., P

(10)

where N (i) is the set of neighboring links to i. A
simple way to satisfy these conditions is to use the
Metropolis weights (Xiao and Boyd, 2003)

Wij =−min

{
1

|N (i)|mi

,
1

|N (j)|mj

}

+ ε, j ∈ N (i)

Wii = −
∑

j∈N (i)

Wij

Wij = 0, otherwise

where ε is a small positive constant. Ho et al.
(1980) have extended the approach to handle non-
negativity constraints on resources, ϕl ≥ 0. This
is accomplished by identifying the ϕ:s that will be
zero at optimality and by finding a starting point
that fulfills certain conditions. Details is provided
in Ho et al. (1980), and it is always possible to do
this initialization procedure.

We will also need to maximize a sum of concave
functions, more specifically

∑

l λlcl(ϕl). This is
done analogously, by identifying fl with −λlcl(ϕl).

4. DISTRIBUTED OPTIMIZING
PROTOCOLS BASED ON DECOMPOSITION

Inspired by the philosophy of Low and Lapsley
(1999) to view network components as distributed
processors solving the network wide utility max-
imization problem, we are now ready to look
for similar solutions to (2). The main challenge
is to coordinate source-rate selections with the
resource allocations under network-wide resource
constraint. We will develop two complementary
approaches, based on primal and dual decompo-
sition techniques. Note that primal and dual in
this paper have their mathematical programming
meaning, and they do not indicate wether the
congestion control algorithms are running at the
sources or on the links. While the dual approach
is similar to the classical approach for fixed net-
works, the use of primal decomposition techniques
appears to be novel in this context.

To get some insight into the structure of the
optimal solution, we apply the Karush-Kuhn-
Tucker (KKT) conditions to the problem (1).

Proposition 1. Under the assumptions made in
Section 2, the optimal solution to (1) satisfies



Rs? = c(ϕ?), smin � s?

L∑

l=1

ϕ?
l = ϕtot, ϕmin � ϕ?

λ?
l c

′
l(ϕ

?
l ) = µ? ∀l

where ϕmin = minl c
−1
l (smin) > 0.

Proof. Omitted. �

It is interesting to see that all links become bottle-
necks and that all resources are used. This is not
the case for networks with fixed capacities. Also
note that λ?

l c
′
l(ϕ

?
l ) will be equal for all links.

4.1 Dual decomposition

Introducing Lagrange multipliers λl, l = 1, . . . , L
for the capacity constraints in (2), we form the
partial Lagrangian

L(s, ϕ, λ) =
{

∑

p

up(sp) − λT (Rs − c(ϕ))

∣
∣
∣
∣
∣

smin � s∑

l ϕl = ϕtot

ϕmin � ϕ

}

and the associated dual function

g(λ) = sup
s,ϕ

{L(s, ϕ, λ)} =

sup
smin�s

{
∑

p

up(sp) − λT Rs

}

︸ ︷︷ ︸

Network

+ sup
∑

l
ϕl=ϕtot

ϕmin�ϕ

λT c(ϕ)

︸ ︷︷ ︸

Resource allocation

Thus, the dual function decomposes into a net-
work subproblem and a resource allocation sub-
problem. The network subproblem is identical to
the source algorithm in optimization flow control,
while the second subproblem can be dealt with us-
ing the center-free algorithm. The corresponding
Lagrange dual problem is

minimize g(λ)
subject to λ � 0

If we assume that the link capacities are strictly
concave, then the partial Lagrangian is strictly
concave in (s, ϕ) and the dual function is differen-
tiable (Bertsekas, 1999, Proposition 6.1.1) with

∇g(λ) = c(ϕ?(λ)) − Rs?(λ)

The dual variables can be updated using a pro-
jected gradient method

λl(t + 1) = [λl(t) − γ(cl(ϕ
?
l (t)) −

P∑

p=1

rlps
?
p(t))]

+

(11)

This update can be carried out locally by links
based on their current excess capacities. Conver-
gence of this scheme follows similarly to the proof
in Low and Lapsley (1999).

The dual algorithm:

While (not optimal) {
• Find ϕ by solving the resource allocation

problem using the method in Section 3.2
• Find s by solving the network subprob-

lem using the source algorithm (7)
• Use these optimal values to compute the

gradient and update λ with (11) }

Note that the optimal resource allocation and
source rates can be found in parallel, but the
optimal solutions to both subproblems are found
before the dual variables are updated. From a
practical perspective, this approach has the dis-
advantage that resource allocations have to be
done at a fast time-scale and that the resource
allocation algorithm (at least in the most basic
analysis) has to be executed to optimality before
the dual variables can be updated.

4.2 Primal decomposition

To complement the dual approach, we will now
develop a distributed solution in which optimiza-
tion flow control is carried out on a fast time-scale,
while resource re-allocations are performed on a
slower time-scale. To this end, we re-write (2) as

maximize ν(ϕ)

subject to
L∑

l=1

ϕl = ϕtot, ϕmin � ϕ
(12)

where we have introduced

ν(ϕ) = sup
smin�s

{
∑

p

up(sp)|Rs � c(ϕ)

}

(13)

Note that ν(ϕ) is simply the optimal network
utility that can be achieved by optimization flow
control under resource allocation ϕ. Consequently,
to evaluate ν(ϕ) we can simply fix the resource
allocation and execute the distributed algorithm
presented in Section 3.1.

Before attempting to solve the problem (12), we
will establish some basic properties of ν(ϕ).

Proposition 2. ν(ϕ) is concave and a supgradient,
h(ϕ), of ν(ϕ) at ϕ is given by

h(ϕ) =
(
λ?

1c
′
1(ϕ1) · · · λ?

Lc′L(ϕL)
)

where λl are optimal Lagrange multipliers for the
capacity constraints in (13).

Proof By strong duality,

ν(ϕ) = inf
λ�0

sup
smin�s

P∑

p=1

(up(sp) − spqp)+
L∑

l=1

λlcl(ϕl)

= inf
λ�0

g̃(s(λ)) +
L∑

l=1

λlcl(ϕl)



with qp =
∑L

l=1 rlpλl. Thus, since ν(ϕ) is the
pointwise infimum of concave functions, it is con-
cave.
Let λ? be the optimal Lagrange multipliers for
a resource allocation vector ϕ. For any other re-
source allocation ϕ̃, it holds that

ν(ϕ̃) ≤ sup
smin�s

{
∑

p

up(sp) − spq
?
p +

L∑

l=1

λ?
l cl(ϕ̃l)

}

≤ν(ϕ)+
L∑

l=1

λ?
l{cl(ϕl) + c′l(ϕl)(ϕ̃l − ϕl) − c(ϕl)}

= ν(ϕ) +
L∑

l=1

λ?
l c

′
l(ϕl)(ϕ̃l − ϕl)

with q?
p =

∑L

l=1 rlpλ
?
l . This, by the definition of a

supgradient, concludes the proof. �

4.2.1. Relaxed primal algorithm To get a simple
solution the problem can be relaxed to only de-
mand

∑
ϕ = ϕtot. Starting at any primal feasible

point ϕ satisfying
∑

l ϕl = ϕtot, we propose to use
the distributed resource update law

ϕ(t + 1) = ϕ(t) − αWh(ϕ(t)) (14)

where W is chosen in the same way as in Sec-
tion 3.2 and α is a steplength parameter. Although
ν(ϕ) is not immediately separable, the gradient
can be evaluated locally by links, and the updates
involve resource exchanges between neighboring
links. Although this algorithm perform consis-
tently well in simulations, we have at this point
not been able to establish theoretical convergence.

The relaxed primal method:

While (not optimal) {
• Find the optimal s by solving the opti-

mization flow problem using the method
in Section 3.1

• Use these optimal values to compute the
supgradient and update ϕ with (14) }

4.2.2. Primal algorithm Since a supgradient of
ν is available, it is natural to use a projected
supgradient algorithm

ϕt+1 = [ϕt + αh(ϕ(t))]+ (15)

with diminishing stepsize, α. Here [·]+ denotes
distributed projection, i.e., solves the following
projection problem in a distributed fashion

minimize ||ϕ − ϕ0||22

subject to
L∑

l=1

ϕl = ϕtot, ϕmin � ϕ
(16)

The projection problem has a separable objective
function and it can be solved with the center-free
algorithm. The primal algorithm can be shown to
converge in the limit.

Fig. 1. The wireless network. The arcs denote
directed wireless links, the dots denote nodes.

The primal method:

While (not optimal) {
• Find the optimal s by solving the opti-

mization flow problem using the method
in Section 3.1

• Use these optimal values to compute the
supgradient

• Execute distributed projection and use
this to update ϕ with (15) }

To summarize: The primal methods rely on solv-
ing the optimization flow problem on a fast time-
scale and performing incremental updates of the
resource allocation in an ascent direction of the
total network utility on a slower time-scale. The
source rate and link price updates are carried out
in a distributed way, similarly to optimization flow
control, while the resource updates are based on
resource exchanges between neighboring links.

5. EXAMPLE

We now demonstrate the algorithms on the sam-
ple network shown in Figure 1. The network has
been generated by placing 8 nodes randomly in a
unit square, and introducing direct links between
all nodes which are within a distance d of each
other. The value of d has been chosen to be as
small as possible while guaranteeing that the net-
work is strongly connected. The link capacities are

cl(ϕl) = ϕl log

(

1 +
γl

ϕl

)

(17)

where γl = 1
d2

l

and dl is distance between the

communicating nodes. This is a special case of
(3). The resource limits ϕmin and ϕtot are set to
0.1 and 10 respectively. The utility functions are
up(sp) = log(sp), which corresponds to propor-
tional fairness (Kelly et al., 1998). The minimum
source rate, smin, was set to 10−6. The example
problem was solved with the dual, relaxed primal,
and primal methods. The step lengths were ap-
proximately tuned to optimize the convergence
rate for the three algorithms. The norm of the
differences between the current and optimal values
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Fig. 2. The norm of the resource allocation minus
the optimal resource allocation versus main
loop iterations.
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Fig. 3. The norm of the source rates minus the
optimal source rates versus main loop itera-
tions.

the decision variables versus number of main loop
iterations are shown in Figure 2 for ϕ and Fig-
ure 3 for s. All methods converge in the limit, as
predicted by theory for the dual method and the
primal method. The dual method seems to be rel-
atively sensitive with respect to the initial point,
and can exhibit significantly worse performance
than shown in the figures. The primal method
shows rapid initial convergence, but slows down
in the end.

6. CONCLUSIONS

In this paper we have considered distributed util-
ity maximization of a wireless network under vari-
able capacity constraints. Based on decomposition
techniques from mathematical programming, we
have proposed a primal and a dual approach,
which rely on the solution of utility network max-
imization under fixed capacity constraints and
center-free resource allocation. The dual approach
yields an algorithm that solves the full problem
using a gradient projection method. The primal
approach yielded two algorithms, the relaxed pri-
mal algorithm that solves a relaxation of the orig-
inal problem using a subgradient method, and

the primal algorithm that solves the full problem
using a projected subgradient method.

We are currently investigating the convergence
properties of the relaxed primal algorithm. A nat-
ural next step is to complement the equilibrium
analysis presented in this paper with an analysis
of the dynamical properties of the proposed pro-
tocols.
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