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Abstract: This paper compares the optimization of a logistic scheduling problem us-
ing two different optimization techniques; the genetic algorithms and the ant colony
optimization. The comparison is preceded by a literature review that summarizes the
available comparison results for different benchmark problems and tries to generalize
the differences between the techniques. The simulation results for the logistic problem
confirm the conclusions of the literature survey: both methods perform equally well, but in
general the genetic algorithms are faster. However, the ant colonies give more information
about the solution, which is advantage in some applications. Copyright c©2005 IFAC.
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1. INTRODUCTION

In order to improve competitiveness and profitabil-
ity, most of the companies today are organized as
supply-chains: a world-wide network of external part-
ners (suppliers, warehouses and distribution centers)
through which raw materials are acquired, trans-
formed into products and delivered to costumers
(Barbuceanu and Fox, 1996). Logistics are the sub-
process of the supply chain that collects the goods
purchased to external suppliers and ships them to the
different costumers on time, minimizing the delivery
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de Apoio III”, FCT, Ministério do Ensino Superior, da Ciência e
Tecnologia, Portugal.

time and the storage costs. Therefore, the control of
a logistic process consists of optimizing a scheduling
problem.

Nowadays, meta-heuristics like genetic algorithms
(GA) (Holland, 1975) or more recently ant colony op-
timization (Dorigo et al., 1996) (ACO) are considered
to be very powerful scheduling techniques (Jain and
Meeran, 1999). These techniques are very appealing
to design an optimization method for a new scheduling
application, because they are simple to implement and
have proved to be efficient in finding optimal solutions
for different applications. But which method should
we choose? Is there a method that guarantees a higher
chance of finding the global optimum?

To answer these questions, it is important to have
comparison results of different methods for the same
applications. However, there are not many works on
direct comparison. Moreover, when different papers
focus different algorithms for the same problem, they
often lack statistical analysis and do not consider the



same measurements or number of trials. At the end,
one ends up using either the most common technique,
the GA, or the method one knows better. If there
is time and expertise knowledge, it is even better
to test more than one method and choose the best
performing technique. But the questions remain: are
there any elements that might tell us before hand
which algorithm is better to our application?

In this paper, we try to answer this question for the
GA and ACO algorithms on the logistic scheduling
problem, and we try to generalize the conclusions for
other type of optimization problems.To do so, Sec. 2
presents a literature survey on comparisons between
the methods and preliminary comparison conclusions.
Sec. 3 describes the logistic scheduling problem and
the GA and ACO implementations to solve this prob-
lem. The comparison results for the logistic prob-
lem are present and discussed in Sec. 4. Section 5
concludes the paper and indicates the future research
steps.

2. LITERATURE REVIEW

In order to compare the GA and the ACO algorithms,
a literature survey is presented on some of the most
representative combinatorial optimization problems.
The GA has been in the last decade and half the
most studied meta-heuristic and it is easy to find
applications in all sort of bench-mark problems. As
for the ACO, because it is a relatively new method, it
has been applied in less bench-mark problems.

Table 1 represents the summary of the comparison re-
sults for the Traveling Salesman Problem, symmetric
(TSP) or asymmetric (ATSP), the Quadratic Assign-
ment Problem (QAP), and the Vehicle Routing Prob-
lem with Time Windows (VRPWT) as the most stud-
ied bench-mark combinatorial optimization problems.
For the job shop scheduling problem (JSSP) there are
no ACO implementations found for the most relevant
benchmark problems, therefore we present results for
a special type of single machine scheduling problem
(SMP).

This table indicates the algorithms performance in
terms of percentage of mean relative error for several
trials. The closer the mean value to the zero, the
more accurate the algorithm is. It also indicates, when
possible, the time required to find the optimization
result. However, this is not a very accurate indicator
of the computational effort of each algorithm, since it
depends on the machine and the programming.

2.1 Traveling Salesman Problem

The latest comparison between GA and ACO for the
symmetric TSP problem is the one presented in (Tsai
et al., 2003). The results show that both methods are
very good, with an average error smaller than 1%

Table 1. Error (%) to the best known solution

Instance GA ACO
Best Mean Time Best Mean Time

TSP - GA ((Tsai et al., 2003)) and ACO((Stützle and Dorigo, 1999a))
lin318 0 15 0 94.2
pcb442 0 33 0.26 308.9
att532 0 97 0.08 387.3
rat783 0 376 0.10 965.2

pcb1173 0.001 1177 0.105 3219.5
ATSP - GA [(Merz and Freisleben, 1997)] and ACO [(Stützle and Dorigo, 1999a)]
ry48p 0 0.2 72 0 0 2.3
ft70 0 0 111 0 0 37.2

kro124p 0 0 35 0 0 7.3
ftv170 0 0.26 100 0 0 56.2
QAP - GA [(Fleurent and Ferlan, 1994)] and ACO [(Stützle and Dorigo, 1999b)]

tai20a 0.268 0.191
tai80a 0.796 0.836
nug30 0.007 0.013
sko42 0.003 0.032
bur26a 0.043 0.006
tai20b 0.0 0.0
tai80b 0.829 0.591

VRPTW GA [(Bäysy, 2001), (Bräysy, 1999)*] and ACO [(Gambardella et al., 1999)]
R1 (V) 12.0 118 12.4 210

(D) 1240 1211
C1* (V) 10 10

(D) 829 828
RC1 (V) 11.5 95 11.7 210

(D) 1418 1382
R2 (V) 3 105 2.7 210

(D) 1017 968
C2* (V) 3 3

(D) 592 590
RC2 (V) 3.3 44 3.3 210

(D) 1200 1149
SMP - GA [(Rubin and Ragatz, 1995)] and ACO [(Gagn et al., 2002)]

Prob408 0 0 - 0 0.011 13.2
Prob508 0.0139 0.0139 - 0.0139 0.124 102.9
Prob608 0.0015 0.0046 - 0 0.034 880.35
Prob708 0.0654 0.107 - 0.0077 0.0221 2336.1

for the ACO and a null average error in all instances
except one for the GA. It is also possible to observe
that the computational effort for the ACO is one order
of magnitude higher than for the GA.

For asymmetric instances, there are much less GA
implementations than for the symmetric case, mainly
because for many genome encoding, the implemen-
tation is not straightforward - here the solution can-
not be represented by a simple permutation, as in
the TSP. The presented results concern genetic local
search (Merz and Freisleben, 1997). There are more
recent results (Choi et al., 2003), however, the results
are not very clear and do not show any special im-
provement, therefore they are not considered. For the
ACO algorithm, the codification is exactly the same
for symmetric or asymmetric instances, due to the
graph searching nature of the algorithm. ACO always
finds the best solutions, while the GA fail occasionally
to find them. The computational effort shows that for
ACO, the time’s order of magnitude for symmetric
or asymmetric problems is the same, while for GA,
the asymmetric problems involve much more effort
than the symmetric instances for the same type of
instances.

These results show an advantage of ACO to solve
asymmetric problems, which indicates that it is more
difficult to implement GA on optimization problems
described by graphs where the weights in the arcs
can assume different values, i.e where the solution
contains vectorial information and it is not just some
set of values as in a permutation.



2.2 Quadratic assignment problem

For the Quadratic Assignment Problem, there is a
direct comparison presented in (Stützle and Dorigo,
1999b), where the ACO algorithm for the QAP is
compared with the GA implementation of Fleurent
and Ferland introduced in (Fleurent and Ferlan, 1994).
There is a recent GA implementation in QAP, pre-
sented in (Lim et al., 2000), with promising results.
However the used test instances do not allow a direct
comparison and therefore we omit those results.

The QAP problem can be easily depicted in a graph,
and the problem’s solution can be represented by a
simple permutation. In this sense, it is very easy to
implement both GA or ACO methods to optimize this
problem. The results present in Table 1 show that also
here, both GA and ACO present similar performances,
again with an average error from the best known
solution smaller than 1%. The computational effort is
not explicitly compared, but it is mentioned in (Stützle
and Dorigo, 1999b) that the ACO algorithm is 25%
slower than the GA approach. This difference can be
easily explained by the difference in maturity of the
implementation/code of the algorithms.

In conclusion, for the QAP problems, both GA and
ACO perform very well, but the GA are faster to find
the optimum, which confirms the conclusions drawn
for the travelling salesman problem.

2.3 Vehicle Routing Problem

For the Vehicle Routing problem, it exists a systematic
comparison work by Bräysy (Bräysy, 1999; Bäysy,
2001) between different methodologies for the prob-
lem with time windows. Table 1 presents the results
in terms of number of vehicles (V) and travel dis-
tance (D). The results show that in general the ACO
approach is better to find the minimum cost distance,
while the GA approach deals better with the customers
clustering part of the problem, since it uses less ve-
hicles. The computational effort seems to be smaller
for the GA approach, however, notice that the ACO
use a fixed computational time, which means that they
probably find the optimum in less time for most of the
instances. Again in this application, the ACO seem
to be more fitted to solve problems represented by
graphs, while the GA are better to solve problems that
concern the evaluation of a set of items.

2.4 Single Machine Problem

We havent found any ACO implementations for the
most famous job-shop problems. The only comparison
work found on this topic is the work by Gagné et al
presented in (Gagn et al., 2002). The results presented
in Table 1 concern this work. They show that also for
this problem both GA and ACO perform equally well

and there are no significative differences. The lack of
results in the manufacturing field clearly indicates that
the ACO algorithm does not perform well in this type
of problems. On the other hand, there are a lot of GA
implementations for these benchmark problems, but
they are not the best performing algorithm.

2.5 Preliminary comparison conclusions

The comparison of GA and ACO based on the litera-
ture review can be summarized as follows:

• GA and ACO algorithms present similar perfor-
mances for different types of optimization prob-
lems;

• GA are in general faster than ACO, due to the
nature of the algorithms. However, for complex
codifications of GA, the computational effort can
increase dramatically.

• ACO seem to perform better in path finding
problems in disjunctive graphs, while the GA
seem to perform better in pure discrete problems
that aim the selection of the best combination of
items from a broader set.

3. THE LOGISTIC SCHEDULING PROBLEM

This paper considers a simplified model of the real-
world logistic process at Fujitsu Siemens Computer
(Silva, 2001), a company that sells computers and
hardware solutions made of components bought from
external suppliers. Every day, the logistic systems col-
lects several requests from different clients, desig-
nated by orders oj ∈ O, a set of different types of
components ci, in certain quantities qij . Each order is
characterized by a due date dj and the release date rj .
The components ci are purchased to external suppliers
and delivered at the logistic center after a certain time
pi, ready to be assigned to the orders waiting in the
orders list O. The decision process occurs at this point.
The system has to observe the stock list and the orders
list, and check which orders have all the components
available to be delivered. The objective is to match
the release date rj with the due date dj . Considering
that the system never releases orders before the due
date, the difference between the completion date and
the due date of the order oj is called the tardiness Tj .
The orders should be delivered on the correct date,
not after, which means that the objective is to have
Tj = 0 for all orders. This decision step is done once
per day, either by some dispatching rule or by some
other optimization procedure. After the selection of
the orders to be delivered, the orders are shipped to
the clients.

The system can be disturbed if the suppliers produc-
tion times pi are different than expected, i.e if the com-
ponents enter the system before or after the expected
date. Another disturbance factor appears if the system



accepts due dates dj different from the expected de-
livery date, because a client is very important and the
order cannot be lost to a competitor.

The scheduling problem consists of optimizing daily
the cost function defined as Global Expected Tardiness
(GET). Let OD be the set of delivered orders and
OD ⊂ O be the complementary set of OD of orders
not delivered, such that OD ∪ OD = O. The GET
function to be minimized is given by

f =

∑

j∈O Tj +#OD(Tl > 0)

#OD(Tj = 0)
(1)

where
∑

j∈O Tj accounts for the minimization of the
tardiness of the orders O in the system; #OD(Tl > 0)
refers to the minimization of the number of orders that
are not delivered and are already delayed; and finally
#OD(Tj = 0) accounts for the maximization of the
number of orders delivered at the correct date.

This problem is NP-Hard (Silva et al., 2003), there-
fore we use meta-heuristics, like GA and ACO, to
optimize it. In principle, GA will perform well, since
the optimization concerns the selection of a best set of
items. However, the problem can be easily described
by a graph, therefore it is expectable that the ACO
also performs well. It is also expectable that GA are
faster than ACO, although computational time is not a
constraint for this application.

3.1 GA implementation

In this problem, a binary encoding is used, since
the problem is intrinsically discrete. The solutions
are vectors with the size of all the orders waiting to
be delivered, n, with value 0 (zero) if the order is
not delivered today, and value 1 if it is. The initial
population is initialized as random binary strings. The
selection is elitist, the rate is 0.4 and it is based on the
fitness function is the one defined in (1). The crossover
method is the one-point crossover, with a rate of 1, i.e.
all parents create offsprings. The mutation rate is low.

If an infeasible solution is created after the genetic
operations, this solution is transformed into a feasible
solution before the algorithm proceeds. The transfor-
mation of an infeasible solution into a feasible one
consists of randomly checking for each gene with
value 1 if there are enough components in the stock
to deliver the order associated with that gene. If yes,
the gene’s value remains 1 and the stock is updated.
If there are not enough components in the stock, the
gene’s value is changed from 1 to 0.

The algorithm runs for O(g × N) ≈ O(N 2) time,
where N is the maximum number of iterations al-
lowed and g is the size of the population.

3.2 ACO implementation

Considering the representation of the problem on a
disjunctive graph, the nodes of the graph are the orders
waiting to be delivered, and the role of the ant is to
find the minimum cost path connecting the orders. We
consider that each ant is carrying a bag with the avail-
able stocks and distributing them among the orders.
It only visits orders whose components it is able to
deliver, therefore the ACO only builds feasible solu-
tions. When the stocks’ bag is empty or the remaining
components are not enough to deliver any missing
order, the search for this ant is finished. The objective
function to be minimize by each ant k is fkL defined
in (1). The probability of an ant k choosing the next
order to deliver is given by:

pkij(t) =















τij
α × ηij

β

m
∑

j /∈Γ

τijα × ηijβ
if j /∈ Γ

0 otherwise

(2)

The pheromone matrix τ is limited to ]τmin, τmax],
with τmin = 0 and τmax = 1. The heuristic function
η is the order’s tardiness: if an order has already a
positive tardiness, the ant will feel a stronger attraction
to visit it, because the order is already delayed. We
define it as an exponential function in the interval
[0, 1] where the value 0 is for the order that has the
minimum lateness Tmin and 1 is for the most delayed
order Tmax:

ηj =
e

Tj−T min

Tmax−Tmin − 1

e− 1
(3)

Notice that in this case the heuristic information is
only order dependent, therefore ηj = ηij . The Tabu
list Γ is the list of orders already delivered by the ant
and also the orders which is not possible to visit, due
to lack of stocks. The parameters α and β measure the
relative importance of trail pheromone and heuristic
knowledge, respectively. Since the pheromone trails
τij and the heuristic values ηij are restricted to the
interval [0, 1], α < β will indicate a higher relative
weight of the pheromones trail. The pheromone up-
date, considering an evaporation of ρ ∈ [0, 1] updates
the pheromones deposited on the trails (i, j) followed
by ant q that found the best solution f q(s) for the
current iteration.

4. COMPARISON FOR THE LOGISTIC
PROBLEM

Every day, there is a new logistic problem to be solved.
However, to analyze the performance of the logis-
tic system, it is necessary to consider a larger time
window (weeks/months). In this case, we consider a
sequence of 30 days in order to compare both method-
ologies, as described in (Silva et al., 2003). Table 2



Table 2. Solutions after 30 days.

Method #Tj = 0 #Tj > 0 ξ(Tj) max(Tj)
∑

l∈OD
|Tl|

GA (best) 388 60 1.62 20 4
GA (ξ, σ) (383.4,3.44) (64.8,4.01) (1.62,0.005) (19,0.71) (3.8,0.84)
ACO (best) 387 62 1.62 13 3

ACO (ξ, σ) (382.8,2.95) (66,2.74) (1.62,0.003) (11.8,0.84) (3.2,0.45)

Table 3. t-test probabilities.

#Tj = 0 #Tj > 0 ξ(Tj) max(Tj)
∑

l∈OD
|Tl|

t-test 0.39 0.29 0.26 < 0.05 0.097

Fig. 1. Convergence in iterations: GA(..) and ACO(-).

presents the results in terms of best result, mean result
and standard deviation. Both methods perform equally
well, i.e. the differences between the optimization
results is not statistical significant, except one. This
conclusion is based on the t-test (Ross, 1996) results
presented in Table 3. We tested the hypothesis that
the results of the GA and the ACO methods belong
to the same population, considering a level of signifi-
cance of 0.05. This hypothesis was confirmed for all
parameters, except the maximum variance max(Tj).
However, this parameter is deceiving, since it might
be caused by a single case where an order was deliv-
ered with a high delay. Nevertheless, for all the other
parameters, the results are identical. The results show
further that both the GA and ACO are individually
quite robust methods when applied to this problem,
since the mean result for each method is very near its
best result and the standard deviation is not very high.

A typical run of the GA and ACO algorithms in
terms of fitness improvement of the population for a
1 day problem, assuming the same initial conditions,
can be seen in Figures 1 and 2. There we present
the convergence results both in terms of number of
iterations and computational time. From these figures,
we observe the main differences between the GA and
the ACO algorithm. In Figure 1 the solutions of the
ACO are very good right from the start, while the GA
take more iterations until they converge to the optimal
solution. This can be explained by the fact that the
ACO method is using a local heuristic to guide the
search while constructing the solution.Although the
GA uses the same heuristic to guide the search, this
heuristic is only used to improve the solution at the
end. This explains also why the GA and ACO results

Fig. 2. Convergence in time: GA(..) and ACO(-).

are different for themax(Tj) parameter: the GA might
fail a single order that is either very delayed (because
is not in the solution), although the solution is also
very good, or that at the end the solution does not take
advantage of all the stocks.

In Figure 2 we can see another important difference:
the GA algorithm is faster than the ACO algorithm,
since the number of basic operations are O(N 2) and
O(N3) respectively (although the ACO takes less iter-
ations to find the optimum). The reason that explains
this difference is the fact that the GA algorithm creates
a solution in one single step, while the ACO creates a
solution by iterating in the disjunctive graph step by
step.

The extra time required by the ACO algorithm is re-
flected in extra information at the end of the algorithm
run. The solution is not only a set of solutions, but it
also contains a vectorial information that can be very
useful in environments with fast dynamics, where or-
ders can be cancelled at any time. If suddenly 1 order
is cancelled, the GA has to restart the optimization
process or it will end up with a sub-optimal solution;
with the ACO algorithm and the vectorial informa-
tion present in the pheromone matrix, we can quickly
define a new optimal solution, just by inspecting the
intensity of the pheromone trails left by the ants. This
advantage of the ACO algorithm, as a solution con-
structor algorithm, has already been explored in the
optimization of communication networks (Caro and
Dorigo, 1998), a highly dynamic problem. Moreover,
the pheromone matrix, by keeping an indirect record
of the optimization steps towards the optimal solution,
can be used in the integration of the scheduling system
in a management system of a supply chain: the ants in
the ACO framework can read the information of the
environment, update and exchange that information.
In this way, the scheduling system could be connected
to other subsystems of the supply chain using ant
colonies as a multi-agent system (Silva et al., 2004).



5. CONCLUSIONS

This paper discusses the optimization methodologies
that can be used to solve scheduling problems: GA and
ACO. Their performances are similar and the choice
upon which should be used has to consider more
variables. The GA is faster than the ACO, because the
managed information during the optimization process
is smaller. At the end, the GA presents a black-box
type of solution, while the ACO presents a grey-
box type of solution. It is possible to extract more
information about the optimization process that can
be used either if the problem becomes a dynamic
problem, or if the scheduling method is integrated in a
multi-agent solution for the global supply chain.
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