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Abstract: The problem of angular velocity of rotor and voltage control in synchronous 
generator machines is considered. As a robust solution of this problem the block 
control technique with sliding mode is proposed. The physical implementations of the 
proposed control law for the real synchronous machines results in chattering due to the 
presence of exciter unmodelled dynamics. In order to reduce the chattering effect we 
design high order sliding mode controllers and exact sliding mode differentiators, 
ensuring the robustness of the closed-loop system.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Synchronous machines have a different time-scale 
nonlinear dynamics. The typical model of 
synchronous generators is the sixth order model in 
which the 60Hz. electromagnetic stator fast 
dynamics is neglected and only the slow mechanical 
and rotor flux dynamics are considered, see for 
example (Kundur, 1964; Sauer, 1998). The principal 
control objectives in synchronous machines are to 
maintain the required values of the synchronous 
speed and generator voltage. So, it is necessary to 
design the feedback controllers for synchronous 
generators for robust stabilization of both: frequency 
and voltage magnitude. Robustness implies operation 
with adequate stability margins and admissible 
performance level in spite of plant parameters 
variations and in the presence of external 
disturbances. The generator control strategies are 
commonly based on linearized dynamics equations 
and consequently only local stability for a specific 
operation point is achieved. Recently, to overcome 
the limitation of linear control, attention has been 
focused on implementation of modern control 
technique, e.g., an adaptive linear control (Son and 

Park, 2000), passivity-based approach (Ortega et al., 
1998; Galaz et al., 2001), intelligent control such as 
fuzzy logic (Hiyama et al., 1997; Lown et al., 1997) 
and neural networks (Hsu and Chen, 1991), control 
based on direct Lyapunov method (Pai, 1989), 
feedback linearization (FL) technique (Gao et al., 
1992; Bourlés et al., 1997), and control based on 
adaptive FL (Jain et al., 1994; Lahdhiri  and  
Alouani, 1998). All of the mentioned controllers 
provide larger stability margins with respect to 
traditional ones. But these control schemes are 
sensitive with respect to uncertainties presented in 
the plant model and do not take into account 
practical limitation on the magnitude of the 
excitation control input. To solve this problem 
(Loukianov et al., 2004) proposed sliding mode 
observer-based controller using block control 
technique in order to obtain the control objectives, 
ensuring the robustness issue even in presence of 
disturbances. The block control technique is applied 
to design a nonlinear sliding surface in such way that 
the sliding-mode dynamics is described by desired 
linear system. However, when the exciter dynamics 
is considered, some problems appear. In a continuous 
control scheme, see for example (Sauer, 1998), the 
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effects of fast actuator unmodelled dynamics rapidly 
decay if they are stable and faster than the slow 
motions of the system, and the omission of actuator 
dynamics is possible. On the other hand, first order 
sliding mode controllers loose robustness in the 
presence of unmodeled dynamics of relative degree 
two or more, converting sliding mode in fast 
switching oscillations. Such oscillations are named 
“chattering”, see for example (Bondarev, 1985; Utkin 
et al., 1999; Fridman, 2002) and reference therein. 
The chattering comes out as low control accuracy, 
vibrations in mechanical parts and undesirable heat 
losses in electric power circuits. 
 
To counteract the effects of chattering, this paper 
proposes the implementation of High Order Sliding 
Modes (HOSM) algorithms (Levant, 2003a, b). 
Taking into account that complete relative degree of 
synchronous machine plus exciter with respect to a 
sliding variable is three, then usage of Third Order 
Sliding Mode (TOSM) becomes reasonable. The 
implementation of TOSM needs the calculation of 
sliding function and their first and second time 
derivatives. In the case of the synchronous 
generators, direct calculations of the derivatives of 
sliding variables results in a computationally 
expensive control algorithm. For those reason we use 
HOSM exact differentiators (Levant, 2003a). 
 
Section II presents the synchronous generator sixth 
order model. In section III we present design of a 
conventional sliding mode controller for the 
synchronous machine. The block controllable form 
of the machine is used to define the sliding surface. 
Section IV presents the structure of voltage exciter 
and gives a brief description of the causes of 
chattering in discontinuous control systems. In 
section V, Third Order Sliding Mode (TOSM) 
algorithm is used to compensate the effects of the 
unmodelled dynamics of the exciter. To estimate first 
and second time derivatives of the sliding variable 
the robust HOSM differentiators are used. Section VI 
presents the simulations results. Section VII gives 
some conclusions. 
 

2. SYNCHRONOUS GENERATOR MODEL 
 
2.1 Basic Equations 
 
The mathematical models for the synchronous 
generator are based on the mechanical and electric 
equilibrium equations; see (Park, 1929; Rankin, 
1945; Kundur, 1964). The mechanical equilibrium 
equations for a synchronous generator are given by 
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where is the power angle (rad.), δ ω  is the angular 
velocity (rad./sec.), bω  is the synchronous angular 
velocity (rad./sec.), H is the inertia constant (sec.), 

 is the mechanical torque (p.u.), and  is the 

electromechanical torque (p.u.). On the other hand, 
the electric equilibrium equations affected by the 
Park transformations (Park, 1929), are expressed as 
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iL=ϕ                                  (4) 
where tt bω= , is the time in seconds, t t is the time 
in p.u.,  

[ ]Tfqd vvvV 0,0,0,,,= ,

[ ]Tkqkdgfqd ϕϕϕϕϕϕϕ ,,,,,= ,

[ ]Tkqkdgfqd iiiiiii ,,,,,= , means voltage, 
means current, 

V
i ϕ means flux linkage, r means 
resistance, L  means inductance, and the subscripts 
mean: s stator,  d direct axis circuit, q  quadrature 
axis circuit,  f field excitation circuit, g  quadrature 
field circuit, kd direct axis damper, kq  quadrature 
axis damper, md direct magnetizing, mq quadrature 
magnetizing, 
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The equation for the electromechanical torque is 

dqqde iiT ϕϕ −= .                        (5) 
 

 
2.2 External network 
 
The synchronous machine is considered to be 
connected to an infinite bus through a transmission 
line, see Figure 1. The equilibrium equation between 
the synchronous machine and the external network is  
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, is the line inductance and  is 

the line resistance, is the infinite bus voltage 
settled in . 
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Figure 1.  Single machine with  infinite  bus. 
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2.3 Linear magnetic model 
 
From (1)-(6), we obtain the sixth order synchronous 
generator model. A more detailed development of 
the modeling, can be viewed in several power system 
literature, e.g. (Krause, 1986; Kundur, 1964; Sauer, 
1998) and others. 
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where , , ( )Txxx 321 ,,=1x ( )Txxx 654 ,,=2x δ=1x , 
ω=2x , 3 fx ϕ= , 4 gx ϕ= , kdx ϕ=5 , kqx ϕ=6 ,  

is the voltage injected to the machine from the 
voltage exciter. Neglecting the fast stator dynamics, 
the stator currents can be presented as continuous 
functions of the slow variables and voltage, that is, 

 and .The 
coefficients of (7) depend on the plant parameters 
and are settled in the appendix. 

fde
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3. BLOCK CONTROL AND FIRST ORDER 

SLIDING MODE 
 
The principal advantage of sliding mode control is 
robustness in the presence of external and internal 
perturbations. To design a sliding controller we use 
the block controllable form for synchronous 
generator model (Loukianov, 1998). In subsection 
3.1 the first order sliding mode controller is 
presented and in subsection 3.2 design of a sliding 
controller based on the block control approach is 
implemented for the synchronous generator model 
presented in section II. 
 
3.1 First order sliding mode (FOSM) 
 
Consider a nonlinear system of the form 

),( uxf
dt
dx

=                             (8) 

where , ,  f  is smooth function of their 
arguments. The general sliding mode procedure is 
the following. First, let us design a nonlinear sliding 
surface in the state space of (8) in the form  
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with respect to the equivalent control,  
(Utkin, 1992), do exists, and the sliding mode 
equation (SME) 
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has the desired properties. Second, taking into 
account the system to be controlled, let us choose a 
discontinuous control  
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that makes the sliding surface (10) to be attractive. 
 
 
3.2 First order sliding mode control for the 
synchronous machine. 
 
To satisfy the control objective, rotor angle and 
velocity stability, the sliding surface will be designed 
using the block control technique (Loukianov, 1998). 
We define the control error as 

bx ως −= 22                           (12) 
The time derivative of (12) along (1), takes the form: 
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the right hand side of (13) becomes to be 20ςk− . 
Then using (14), the switching surface can be defined 
as 
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The projection motion on the subspace  can be 
derived using (14) and (15) of the form 
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where  is a bounded function, sf )()( 23 ⋅=⋅ bbb  and 

 is a positive function of the time. It is easy to 
see from (16) that the relative degree of the generator 
model with respect to sliding variable s  is one. 
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4. EXCITER DYNAMICS AND CHATTERING 
 

For systems with first order sliding mode controllers, 
the presence of fast actuators of relative degree two 
or more caused the chattering.  That is why it is 
necessary to design the controllers suppressing the 
chattering even in the presence of actuators.  
 
The synchronous generator actuator is a rotating 
rectifier exciter with static voltage regulator, see 
Figure 2. Its model has the form (Sauer, 1998): 
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where  is the exciter input,  is the rated 

feedback stabilizing transformer, and  are the 
rotating exciter time constant and gain;  and   
are the stabilizing transformer time constant and 
gain;  and  are the amplifier time constant 
and gain; and  is a saturation function.  
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Figure 2. Rotating rectifier exciter with static voltage 
regulator. 
 
We see that the relative degree of unmodelled exciter 
dynamics with respect to their output fde  is two.  
 
 
5. HIGH ORDER SLIDING MODE CONTROLLER 
 
5.1 High order sliding mode (HOSM) 
 
Consider a smooth dynamics system (8) with a 
smooth output function, ( )s x R∈ , and let the system 
be closed by some possibly-dynamical discontinuous 
feedback. The control task is to keep the output 

. Then, provided that successive total 

time derivatives  are continuous 
functions of the closed system state space variables, 
and the r-sliding point set 

( ( )) 0s x t ≡
)1(,,, −rsss K&

0)1( ===== −rssss K&&&                (20) 
is non-empty and consists locally of Filippov 
trajectories, the motion on set (20) is called r-sliding 
mode (rth-order sliding mode) (Levant, 2003a). 
 
HOSM presents even better robust performance than 
traditional first order sliding mode. HOSM dynamics 
converge toward the origin of surface coordinates in 
finite time always that the order of the sliding 
controller is equal or bigger than the sum of a 
relative degree of the plant and the actuator 
(Bondarev, 1985). 
 
 
5.2 Third order sliding mode controllers (TOSM)  
 
In our case of study the synchronous generator 
taking in the account the exciter dynamics, the 
complete plant model has relative degree three with 
respect to the designed output (15). Using 
(12) and (15) the plant dynamics is represented as 

0 ( , )s 1 2x x
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1ss =ω& , 21 ss =& , 2 ( , , ) ( , )s m ss f T b= +1 2 1 2x x x x& u  (22) 
where sf is a bounded function, ( ) ( )s s Eb b T T⋅ = ⋅ A . 
So, to avoid the chattering we use the following third 
order sliding mode controller:  
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In (Levant, 2003a) it was show that if 0 0α >  then 
the state of the closed-loop system converges to the 
manifold 0sω = , 1 0s = ,  in a finite time. 
Then the sliding mode motion on this manifold is 
governed by the second order linear system (21) 
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with desired eigenvalue 0k− . 
 To implement the proposed control (23) it is 
necessary to estimate variables 1s  and 2s  
 
5.3 Exact robust differentiator 
 
To estimate the derivatives 1s  and 2s  without its 
direct calculations, we will use the 2nd-order exact 
robust differentiator of the form (Levant, 2003a) 
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where ,  and  are the estimate of 0z 1z 2z sω , 1s  and 

2s , respectively, 0>iλ , . Under condition 0,1, 2i =

0 1 2λ λ λ> >  the third order sliding mode motion on 
will be established in a finite time. The obtained 
estimates, 1 1z s sω= = &  and 2 2z s sω= =&&  are then 
used in the controller (23). 
 

6. SIMULATION RESULTS 
 
The proposed control algorithms were tested on the 
sixth order model of synchronous generator 
connected through a transmission line to the infinite 
bus. The operation points of the machine were 
selected near the nominal values of reactive power 
and active power in order to give critical situations.  
The unmodeled dynamics of actuator was added to 
probe robustness of control structure and show the 
chattering effects. 
 
6.1 Standard parameter of the machine 
 
The parameters of the synchronous machine were 
obtained from data plate and test of the real 
generator. The parameters of the synchronous 
machine and external network in p.u. are: 
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allows us to obtain the parameters of model (7). The 
exciter parameter are: , 
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steady state of the machine is calculated as 
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6.2 Controllers 
 
The controller used the gains  . Fort 
the TOSM controller, 

,2.00 =u 0 10k =
.12.0=α  Parameters for the 

sliding differentiator were selected as, 
,1250 =λ ,1151 =λ .1002 =λ   

 
6.3 Results 
 
Simulations of a 0.15 sec. short-circuit in the 
transformer terminals were used to evaluate the 
proposed sliding controllers. Figures show that in 
spite of the strong disturbance the controlled states 
hastily reach a steady state condition, exhibiting the 
stability of the closed loop system. Figure 3-6 depict 
that FOSM achieve the control goals even when the 
unmodelled dynamics of actuator are added, but 
chattering is presented. TOSM controller reduces the 
chattering. In Figure 7 is depicted the voltage 
generator with no change with FOSM or TOSM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3. Angular velocity FOSM and TOSM. 

 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
Figure 4. Angular velocity (zoom Figure 3). 
 

 
 

 
 
 
 
 
 
 
 
 

 
 

 
Figure 5. Power angle FOSM and TOSM.   
 

 
 

 

 

 

 

 
 
 
 

Figure 6. Power angle (Zoom Figure 5).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Generator voltage (FOSM and TOSM). 
 
 

CONCLUSION 
 
In this paper we have illustrated how the properties 
of block control technique can be combined with the 
robustness and simplicity of sliding mode. This 
combine controller design in the regulation of speed 
and voltage of a synchronous generator was used.  
However the presence of exciter dynamics causes 
chattering in SM control systems. It is shown that the 
usage of TOSM reduces the effects of chattering in 
the presence of exciter. 
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