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Abstract: An estimation scheme that allows to recover vehicle density and velocity
in a stretch of highway is presented. The design is based on a non-linear switching
model, inspired by the cell transmission traffic flow model, that has a distinctive
behavior for free flow or congested traffic. Lyapunov and linear matrix inequalities
techniques are used to prove the stability of the estimation and observer schemes.
The algorithm is applied to a set of data traffic collected in a stretch of highway
in Pasadena, California, showing good performance. Copyright c©2005 IFAC.
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1. INTRODUCTION

Incorporating automated devices and advanced
control techniques in surface transportation net-
works composed by highways, freeways or urban
avenues and streets is becoming a very common
solution to help alleviating daily impacts of con-
gested traffic. Adaptive cruise control, advanced
traction and braking schemes, driver alert sys-
tems, variable signal systems and real time on-
ramp metering control are among the new tech-
nologies (Varaiya, 1993; Horowitz and Varaiya,
2000).

This paper focuses on the traffic information re-
quired to implement on-ramp metering schemes.
In a normal highway, there are sensors already
installed to provide some of this information.
However, in many cases, measurements are not
obtained in appropriate places for on-ramp me-
tering control, or the available sensors are faulty.
Therefore, it is necessary to use on-line estimation
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schemes to provide all the needed traffic informa-
tion.

In this paper an estimation scheme to recover
vehicle density and velocity is proposed. The
design is based on the cell transmission traffic
flow model introduced in (Daganzo, 1994; Da-
ganzo, 1995). This is in appearance a simple traf-
fic flow model and yet it is able to reproduce
most of the phenomena observed in real traffic.
There are many other traffic flow models in the
literature, as those suggested, for example, in
(Payne, 1971; Papageorgiou et al., 1990; Broucke
and Varaiya, 1996; Drew, 1968), that can also re-
produce traffic flow, and in some cases with more
accuracy than the cell transmission model. In this
paper however, the cell transmission model is used
as it characterizes traffic flow in a cell with only
two parameters that represent the velocities of the
traffic waves traveling downstream or upstream,
for free flow and congested traffic, respectively.
The value of these wave velocities can be recovered
with real time identification schemes.

Based on the cell transmission model, a switching
model was proposed in (Munoz et al., 2003). This
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Fig. 1. Highway stretch (I-210 West in Southern California)

model switches between a set of linear models
depending on the condition, free flow or congested
traffic, in a set of cells. The switching model was
applied to estimate vehicle density in a stretch of
highway in Southern California, for which traffic
data was available. It was assumed that wave
velocities were known constants and equal for all
cells.

This paper uses this switching model structure,
although now assumes that vehicle densities and
wave velocities are unknown and that can vary
from cell to cell. This assumption implies that
each one of the models of the switching structure
becomes non-linear. To reduce the number of pos-
sible models involved in the switching structure, in
this paper only two models are considered, corre-
sponding to all the cells in the stretch of highway
having free flow or congested traffic, respectively.

The first section of this paper describes the traffic
flow model used. The following section contains
the design of the adaptive observer, including the
analytical proof of its convergence. The last two
sections refer to simulation results and conclu-
sions.

2. TRAFFIC FLOW MODEL

To explain the design of the velocity and den-
sity estimator, consider the stretch of highway
depicted in Fig. 1, that is composed by eight cells,
two on-ramps and two off-ramps. This stretch rep-
resents a portion of highway I-210W in Southern
California.

The cell transmission model introduced in
(Daganzo, 1994) defines the flow between cells
according to

yi = min{vi−1ki−1, wi(kji − ki)} (1)

where ki is the vehicle density, vi the free-flow
upstream wave velocity, wi the congested down-
stream wave velocity and kji the jam density, all
of them referring to cell i. To better understand
the meaning of this flow calculation, consider the
density vs. flow “fundamental diagram” shown in
Fig. 2. The region with positive slope, v, corre-
sponds to free-flow traffic that can be calculated
using the first argument in Eq. (1), while the re-
gion with negative slope, −w, to congested traffic

that is calculated using the second argument in
Eq. (1). When cell i is congested, the flow it can
receive from cell i − 1 is limited by the available
space in cell i, otherwise when cell i is in free-
flow, the limit of the incoming flow depends on the
maximum velocity vi−1 at which vehicles coming
from cell i − 1 can travel.
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Fig. 2. Flow-density diagram

For the time evolution of the density a principle of
vehicles conservation is used in (Daganzo, 1994)
in such a way that

k̇i =
1
Li

(yi − yi+1) . (2)

with with Li the length of cell i.

If all cells are assumed in free flow traffic and
notation in Fig. 1 is used, the dynamics of the
density can be described in matrix form by

k̇ = L−1 FL V k + BL u (3a)
y = CL(v)k (3b)

where k is the vector of cell densities,
V = diag{v}, v = [v1, · · · , v8]T , L−1 =
diag{1/L1, · · · , 1/L8}, u =

[
y1 r1 d1 r2 d2

]T ,
CL(v) =

[
0 · · · 0 v8

]

FL =

⎡
⎢⎢⎢⎣
−1 0 · · · 0

1 −1 · · · 0
...

...
. . .

...
0 0 · · · −1

⎤
⎥⎥⎥⎦ , (4)



BL = L−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 −1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Define

AL(v) = L−1FLV . (6)

The diagonal structure of V implies that

AL(v)k = AL(k)v (7a)
CL(v)k = CL(k)v (7b)

For the model in Eq. (3) it is assumed that it is
not possible to measure density k and velocity v
and that only flow measurements are available.

When all the cells are congested, it is possible to
derive a similar model to that in Eq. (3), where
there are some changes in the elements of FL,
CL(v), BL, u and y. For economy of space, only
the case of all cells with free-flow traffic will be
explained in this paper. The final structure of the
model still holds, and therefore the convergence
analysis is also applicable. Details of the model
for the congested case can be found in (Munoz et
al., 2003).

3. DENSITY AND VELOCITY ESTIMATION

The following density estimator is proposed
˙̂
k = AL(v̂)k̂ + BLu + GL(y − ŷ) (8a)

ŷ = CL(v̂)k̂ (8b)

where k̂ and v̂ are respectively the estimates of k
and v, and the pair (AL(v), CL(v)) is observable
for all values of v that correspond to free-flow.
If k̃ = k − k̂ is the density estimation error, its
dynamics is given by

˙̃k = k̇ − ˙̂
k = ĀL(v)k − ĀL(v̂)k̂ (9)

where

ĀL(v) = AL(v) − GLCL(v), (10)

where matrix ĀL(v) is Hurwitz with the proper
choice of GL. After some manipulations, Eq. (9)
can be expressed as

˙̃k = ĀL(v)k̃ + ĀL(ṽ)k̂, (11)

with ṽ = v − v̂.

To design the velocity estimator, it is considered
that the following flows can be measured: y1,
r1, d1, y5, r2, d2 and y9. The measured out-
put for the free flow case is defined as z =[
r1 d1 y5 r2 d2 y9

]T
, that can be expressed as

z = HLKv = S(k)v (12)

where K = diag{k},

HL =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (13)

Accordingly, the estimated output ẑ is given by

ẑ = S(k̂)v̂, (14)

therefore the output estimation error is

z̃ = z − ẑ = S(k)v − S(k̂)v̂ = S(k̂)ṽ + S(v)k̃.
(15)

It is again the case that S(k)v = S(v)k. The time
evolution of v̂ is chosen as a gradient like law given
by

˙̂v = ΓST (k̂)z̃ (16)

where Γ is a diagonal matrix of positive gains.

4. CONVERGENCE ANALYSIS

In this section the stability of k̃ = 0 and ṽ =
0 is investigated. For that purpose consider the
following Lyapunov function candidate

V = V1 + V2, (17)

with

V1 =
1
2
k̃T P k̃ (18a)

V2 =
1
2
ṽT Γ−1ṽ (18b)

where P = PT > 0. Taking the time derivative of
Eq. (18a)

V̇1 =
1
2

(
k̃T P

˙̃
k + ˙̃

k
T

P k̃

)
= (19)

=
1
2
k̃T

[
PĀL(v) + ĀT

L(v)P
]
k̃ +

+
1
2
k̃T PĀL(ṽ)k̂ +

1
2
k̂T ĀT

L(ṽ)P k̃

Using Eq. (7a)

V̇1 =
1
2
k̃T

(
PĀL(v) + ĀT

L(v)P
)
k̃ + (20)

+k̃T PĀL(k̂)ṽ

Taking now the time derivative of Eq. (18b), using
Eq. (16) and Eq. (15)

V̇2 = −ṽT ST (k̂)
(
S(k̂)ṽ + S(v)k̃

)
(21)



From Eqs. (20) and (21)

V̇ =V̇1 + V̇2 =

=
1
2
k̃T

(
PĀL(v) + ĀT

L(v)P
)
k̃

+ k̃T PĀL(k̂)ṽ

− ṽT ST (k̂)
(
S(k̂)ṽ + S(v)k̃

)

= − k̃T Qk̃ − ṽT ST (k̂)S(k̂)ṽ

+ k̃T PĀL(k̂)ṽ − ṽT ST (k̂)S(v)k̃ (22)

where P satisfies the Lyapunov equation

PĀL(v) + ĀT
L(v)P = −2Q. (23)

Notice that the two first terms in Eq. (22) are
negative definite and negative semidefinite, re-
spectively. The other two terms in Eq. (22) can
be grouped as

k̃T PĀL(k̂)ṽ − ṽT ST (k̂)S(v)k̃ = (24)

k̃T
(
PĀL(k̂) − ST (v)S(k̂)

)
ṽ.

The idea now is to take advantage in the degree
of freedom available in the selection of Q (Ghaoui
et al., 1995) and choose it in such a way that P
in Eq. (18a) satisfies the following inequality

PĀL(k̂) + ĀT
L(k̂)P ≤ −ST (v)S(k̂) − ST (k̂)S(v).

(25)

Using Eq. (25), it is possible to rewrite Eq. (22)
as

V̇ ≤ − k̃T Qk̃ − ṽT ST (k̂)S(k̂)ṽ

− k̃T
(
ST (v)S(k̂) + ST (k̂)S(v)

)
ṽ (26)

If the choice of matrix Q satisfies Q ≥ ST (v)S(v),
then Eq. (26) satisfies

V̇ ≤ −
(
S(v)k̃ + S(k̂)ṽ

)T (
S(v)k̃ + S(k̂)ṽ

)T

≤ 0,

(27)

that implies the stability of k̃ = 0 and ṽ = 0. Using
Barbalat’s Lemma (Khalil, 1996), it is possible to
prove that S(v)k̃ → 0 and S(k̂)ṽ → 0 as t → ∞.

To verify that the selection of P in Eq. (25) is
appropriate, its value is substituted in the left
hand side of the Lyapunov equation (23) to obtain
that PĀL(v) + ĀT

L(v)P ≤ −2ST (v)S(v) ≤ 0.
This shows the feasibility of the linear inequality
matrix problem.

5. RESULTS

To verify the performance of the estimation
scheme, it was applied to a set of traffic data
obtained for the stretch of highway in Fig. 1. For
this highway, there is timed information for some
days of operation for the following flows y1, r1,
d1, y5, r2, d2 and y9 (see (PEMS, 2003)). There is

also local density information, inferred from occu-
pancy measurements, for points at the beginning
of the stretch, between cells 4 and 5 and at the
end of the stretch. The highway has four lanes
and the total length of the stretch is about 3000
m (L =

[
373 373 603 225 225 444 444 396

]T ).
The jam density kj was set to 0.4225 [veh/m].

There are two different estimators, one for all cells
in free-flow and the other for all cells congested.
The scheme switches between the two estimators
depending on the density at the last cell of the
stretch (cell 8). When the density k8 is below
a given threshold k0, the estimator for free-flow
is used and when k8 is above k0, the estimator
for congestion is employed. When one estimation
scheme is being used, the estimation is frozen in
the other. k0 chosen to be close to the that of
Fig. 2 for nominal traffic. A value of k0 = 0.08
[veh/m] was used in the simulations. The value of
the observer gain matrix GL was set to yield the
eigenvalues of matrix ĀL(v) to be 20−30% faster
than those of matrix AL(v).

Figs. 3-5 show the measured flow and the esti-
mated flow at the beginning, middle point and
the end of the stretch, while Figs. 6-8 show the
estimated densities at cell 1, the average of cells 4
and 5, and cell 8, compared with the point density
at the beginning, middle point and the end of
the stretch. The agreement between real and pre-
dicted flows in Figs. 3-5 is very good. The similar-
ity between average densities and point densities
in Figs. 6-8 is also appropriate, although not as
good as the similarity in flows estimates. This is
due, partially to the fact that measured densities
are inferred from occupancy measurements using
“g” factors and the estimated densities correspond
to average densities.
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Fig. 3. Estimated and real flow at the beginning
of stretch (y1).
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Fig. 4. Estimated and real flow at the middle of
stretch (y5).
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Fig. 5. Estimated and real flow at the end of the
stretch (y9).

Finally, Figs. 9-10 show the estimated wave ve-
locities for cells 1, 5 and 8. Plots show the com-
plementary behavior of process of velocities iden-
tification, as one set remains constant while the
other varies. There are not, unfortunately, real
velocity measurements to use for comparison pur-
poses. The obtained values, however, are in good
agreement with field observations performed in
that stretch of highway.

6. CONCLUSION

An estimator for vehicles density and velocity in a
stretch of highway was presented. The estimation
scheme was based on the cell transmission traffic
model proposed by (Daganzo, 1994; Daganzo,
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Fig. 6. Estimated density at cell 1 and point
density at the beginning of stretch.
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Fig. 7. Average estimated density of cells 4 and 5
and point density between cells 4 and 5.

1995) and later modified in (Munoz et al., 2003).
Two estimators were designed, one for cells in free
flow and the other for cells with congested traffic.
The convergence analysis of the estimation of
velocities and densities was based on Lyaupunov
and linear matrix inequalities techniques. Results
of the use of the scheme are compared with real
traffic data were presented, that showed good
performance. It it still necessary to improve gains
tuning.
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