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Abstract: This research work compares the classification results of Fetal Heart Rate signal 
using three different feature sets. The Discrete Wavelet Transform is employed to extract 
three different sets consisted of scale and time-scale dependent features from the Fetal 
Heart Rate signal. The three sets of features are classified using the method of Support 
Vector Machines (SVM) with RBF kernels. The experimental data set are 40 intrapartum 
recordings and the extracted three different sets of features are entered to SVM to classify 
the FHR. The classification results for the three data sets are compared with respect to their 
ability to characterize fetal condition. The best classification performance achieved was 
90%. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Electronic Fetal Monitoring (EFM), usually named 
cardiotocography, has been widely used for 
antepartum and intrapartum fetal surveillance. EMF 
refers to the continuous recording and monitoring of 
Fetal Heart Rate (FHR) and Uterine Activity (UA), 
also known as cardiotocogram (CTG), which is 
depicted in Fig.1. In daily obstetric practice, 
obstetricians largely rely on information from the 
FHR. During the final period of labour and especially 
during the stressful delivery process, the risk of 
developing fetal hypoxia is increased. Monitoring of 
FHR is extensively used as an indirect screening test 
on fetal acid base balance (Geijn, 1996). 
  
In every day practice, obstetricians monitor and 
interpret FHR. However, extensive studies on FHR 
reliability have shown surprisingly poor inter-
observer and intra-observer agreement in tracing 
interpretation (Bernardes, et al., 1997). This 
inconsistency in interpretation and the increase of 
false positive diagnosis have raised the question of 
whether a reliable and reproducible interpretation of 
the FHR patterns can be developed. The answer to 
this question may be the deployment of new 
methodological tools, considering new indices more 
responsive to normal and pathological fetal 
conditions.  

 
Fig. 1. Typical CTG, with the FHR in the upper part 

and the UA in the lower part 
 
Therefore, some algorithmic approaches for the 
interpretation of the FHR that have been recently 
proposed are greatly helped by the technological 
advances in computers along with new signal 
processing methods (Arduini, et al., 1993; Berdinas, 
et al., 2002; Bernardes, et al., 1991; Magenes, et al., 
2000; Cazares, et al., 2001; Chung, et al., 1995; 
Dawes, et al., 1995; Jezewski, and Wrobel, 1993; 
Krause, 1990; Maeda, et al., 1990; Mantel, et al., 
1990a; Mantel, et al., 1990b; Salamelekis, et al., 
2002; Skinner, et al., 1999; Taylor, et al., 2000). The 
employment of mathematical and algorithmic 



     

approaches has led to a reduction of inter and intra-
observer variability but there is still room for 
improvement regarding the identification of emergent 
situations which induce unacceptable stress on the 
fetus. 
 
In this research work we concentrate on the final 
minutes of labour, seeking for appropriate indices 
that can trigger an alert if the fetus is on the verge of 
severe compromise (metabolic acidosis that may lead 
to cerebral palsy or even death).  
 
We examine a novel hybrid method to discriminate 
fetuses suspicious of developing acidemia, based on 
features extracted mathematically from the FHR 
signal. The proposed method consists of two main 
stages; the first one deals with the extraction of a set 
of features, which are based on the coefficients 
produced by the application of the Discrete Wavelet 
Transform on the FHR signal. The second stage 
manipulates those coefficients through a Support 
Vector Machine (SVM) classifier to make a decision 
whether the particular FHR trace is to be 
characterized as “normal” or “suspicious”.  
 
In the past few years, researchers from the field of 
applied mathematics and signal processing have 
developed powerful wavelet methods for the 
multiscale representation of signals. This kind of 
representation allows the decomposition of a signal 
into a number of scales, each scale representing a 
particular “coarseness” of the signal under study 
(Mallat, 1998). Moreover, the localized nature of the 
wavelet transform makes it suitable to deal with non-
stationary signals. As a result wavelet transform is 
particularly useful for medical signal processing and 
has been used for a number of biomedical 
applications (Unser, and Aldrubi 1996). Wavelet 
analysis has been used with quite a success for the 
analysis of the interbeat intervals of adults (Thuner et 
al., 1998; Ivanov et al., 1996). It has also been used 
for the analysis of FHR during the second stage of 
labour (Salamalekis et al., 2002). 
 
Support Vector Machines have been recently 
developed in the framework of statistical learning 
theory (Vapnik, 1995) and have proved highly 
successful in a number of classification studies 
(Burges, 1998, Veropoulos et al., 1999). Their 
experimental success in practical and difficult 
classification problems due to their ability to 
generalize well for unseen data, even when the 
training set is quite small, were the main reasons for 
selecting them for this particular problem 
 
This paper is structured as follows, section 2 presents 
a background introduction concerning the basic 
theory of DWT and the SVMs. Section 3 presents the 
proposed classification procedure and how it was 
used in the experimental data set. Section 4 compares 
and discusses the classification results, and in section 
5 some conclusions and future directions are drawn.    

2. MATHEMATICAL BACKGROUND 
 

Fetal Heart Rate signal is a biological signal that 
reflects the time varying influence of the fetus’ 
autonomic nervous system and its components, the 
sympathetic and parasympathetic branch (Parer, 
1997). As most physiological signals, FHR is non-
stationary, where the main non-stationarities are the 
baseline and the acceleration/deceleration events 
(Jejewski et al, 2003). As a result, traditional Fourier 
analysis is not suitable for this particular type of 
signal, unless it is restricted to sufficiently short 
segments.   
 
2.1  Wavelet Transform 
 
A quite novel signal processing method is the 
wavelet analysis. The way wavelet analyses localizes 
signal’s information in the time-frequency (time-
scale would be me a more appropriate term), makes  
it especially suitable for the analysis of non-
stationary signals as an alternative to the classical 
short-time Fourier transform. 
 
The wavelet transform is a decomposition of the 
original signal onto a set of basis functions called 
wavelets. Those basis functions are obtained from a 
single prototype wavelet, which is referred to as the 
“mother wavelet” ( )tψ , by dilations and 
contractions (scalings), as well as shifts:  
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In the case of discrete wavelet transform, the dilation 
and translation parameters α, b are restricted only to 
discrete values leading to the following expression:  
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For practical purposes the simplest and most efficient 
discretization comes by choosing 0 2a =  and 0 1b =  
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For this particular discreterization and with careful 
choice of the wavelet we can have a non-redundant 
decomposition of a signal on an orthonormal wavelet 
base. What it is even more interesting is that this kind 
of decomposition can be implemented using a 
cascade of FIR filters. For a discrete signal 

[ ] , 0,..., 1x i i M= − , the wavelet coefficients are 
given by:  
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For an orthonormal wavelet base, the information 
stored in a wavelet coefficient ,m nT  is not repeated 
elsewhere. As it is obvious, each wavelet coefficient 
encompasses information not only concerning the 
scale but also the time (window) that “produced” this 
information.  
 
Different mother wavelets give rise to different 
classes of wavelets, and hence the distribution of the 
wavelet coefficients of the decomposed signal can be 
quite different. However, according to (Thuner et al., 
1998) in their work involving the analysis of 
heartbeat intervals, the results obtained were similar 
experimenting with different types of mother 
wavelets. In this work we experimented with a 
variety of mother wavelets in order to find the best 
one concerning each on of the specific 
implementations. 
   
2.2  Support Vector Machines 
 
SVMs are universal feed-forward networks pioneered 
by Vapnik (Vapnik, 1995). Support Vector Machines 
are used for pattern classification and nonlinear 
regression. In pattern classification –and particularly 
in the case of a binary or dichotomization problem 
i.e. a problem with only 2 classes- the problem can 
be stated as follows:  

Having a training set ( ){ } 1
,

l
i i i

S y
=

= x , where each 

point ix  is a p -dimensional vector, the input pattern 

for the i-th example, and { }1,1iy ∈ − is a label that 

specifies to which one of the 2 classes the point ix  
belongs to, find a discriminating function that maps 

ix  to iy . SVM classifiers try to solve this pattern 
classification problem by: 
1) Nonlinear mapping of an input vector into a high-

dimensional feature space 

: p m→ℜ ℜφ ,( m p> ) 
2) Construction of an “optimal” hyperplane for 

separating the features in the high-dimensional 
feature space (Haykin, 1999).  

 
This “optimal” hyperplane: 

( ) ( )if b= ⋅ +x w φ x  (5) 

can be constructed by solving the  following 
quadratic optimization problem: 
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The dual problem, which is in fact the one to be 
solved, is: 
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where parameter C  is determined by the user. Larger 
C corresponds to assigning a higher penalty to errors 
(Burges, 1998). The discriminating function is finally 
given by: 
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The points for which ia >0 are called Support 
Vectors. They are the most difficult patterns to 
classify and usually are a small portion of the training 
set. If the nonlinear mapping function is chosen 
properly, the inner product in the feature space can 
be written in the following form:  

( ) ( ) ( , )i j i jK⋅ =φ x φ x x x  (11) 

where K  is called the inner-product kernel. By 
using an appropriate symmetric positive semi-
definite kernel, it is guaranteed that it corresponds to 
an inner-product in a Hilbert space. Therefore, one 
does not even have to know what the actual mapping 
is (Burges, 1998). 
 
 

3. PROPOSED PROCEDURE AND 
EXPERIMENTS 

 
The data set consisted of 40 FHR signals and it was 
divided into 2 subsets. Acidemia was defined for this 
study based on the umbilical artery pH<7.1. 
Therefore, in the first subset we included those 
signals that belonged to fetuses with umbilical artery 
blood pH less than 7.1 and in the second subset, 
those that belonged to fetuses with umbilical artery 
blood pH more than 7.2. All FHR records had been 
acquired during the final stage of the labour and, in 
fact, as close as possible to the delivery. This means 
that the data sets were time-biased free and a direct 
association could be made between the segment of 
the signal used and the fetal outcome. The recordings 
had durations ranging from 20 minutes to 1 hour. 
 
 
3.1 Artifact removal-Data segmentation 
 
FHR signal is a very noisy signal with a lot of spiky 
artifacts and even periods of missing data due to the 
movement of the baby and the stress induced during 
the labour. In order to eliminate this kind of “noise” 



     

we implemented a noise detection and elimination 
algorithm (Bernardes, et al., 1991). 
 
In the data set, we focused on the final minutes of the 
recordings – those that are closer to delivery. Other 
recent experiments have shown that the final minutes 
before the delivery are those that affect more the 
value of the umbilical artery pH (Georgoulas, et al., 
2005). Therefore, we used only the 10 and 5 minutes 
of each recording closest to the delivery. It must be 
mentioned that in some of the recordings the final 1-2 
minutes had to be excluded (before the artifact 
removal stage had taken place) because the FHR 
signal was totally obscured by noise.  
 
3.2  Feature extraction 
 
In this work, we examined and compared 3 different 
feature sets. All features are extracted using the 
coefficients of the DWT of the FHR signal. 
Therefore, we performed 3 different experiments. In 
the first one we used the entropy of the coefficients at 
each scale. In the second one we used isolated values 
of the wavelet coefficients. And in the third one we 
used a statistical measure of the coefficients 
contained in a window that spans only part of the 
available coefficients at each scale. 
 
First feature set. For each FHR signal and for the 
corresponding time segment (10 and 5 minutes) we 
carried out discrete wavelet transform up to scale 6. 
For each scale, we calculated the corresponding 
entropy S of the (discrete) distribution 

i
p  of 

normalized energies of wavelet coefficients (i.e. 
squared magnitudes) (Shannon entropy measure) 

( ) log( )i i
i

S p p p= −∑                  (12) 

Therefore, for each signal we extracted 6 values for 
each scale of decomposition. We applied this to both 
the 10 and 5-minute segments (the 5 minute 
segments correspond to the second half of the 10 
minute segment). 
 
Second feature set. For each FHR signal and for the 
corresponding time segment (10 and 5 minutes) we 
carried out discrete wavelet transform up to scale 5. 
For each scale we selected the wavelet coefficient 
with the maximum absolute value. This value, 
together with the “time” index n, were the features 
that we used to characterize each scale. Therefore, 
for each FHR signal we extracted 10 features. We did 
this both for 10 and 5-minute segments. 
 
Third set.  For each FHR signal and for the 
corresponding time segment (10 and 5 minutes) we 
carried out discrete wavelet transform up to scale 5. 
For each scale we used a sliding window and for the 
wavelet coefficients inside that window we 
calculated the standard deviation seeking for the 
location of the window that maximizes that quantity 
(Fig. 2). The location of the window for which we 

have the maximization of the calculated standard 
deviation, along with the time at which this happens, 
(the centre of the window) were the features that we 
used to characterize each scale. Therefore, for each 
signal we extracted 10 features. We did this both for 
10 and 5-minute segments.  
 
3.4  Classification 
 
Depending on how the inner-product kernel is 
generated, different learning machines can be 
constructed with quite different non-linear decision 
surfaces. In this work we used only RBF learning 
machines, where the kernel function is: 

( ) 2
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and the width 2σ  is specified a priori by the user and 
is common for all the kernels. 
  
As mentioned, the parameter C (Eq. 7 and eq. 9) is a 
user defined variable. We determined both 
parameters C and σ using an experimental training 
validation procedure, testing various configurations 
of the learning machines. 

 
Due to the small number of labeled data, in order to 
test the performance of our classification scheme, we 
used multifold cross-validation (Haykin, 1999). We 
divided the 40 cases into 4 (non-overlapping) 
subsets, each one with 5 examples from the “normal” 
and 5 from the “suspicious-abnormal” group. The 
SVM classifier was trained on all subsets except for 
one, and the validation performance was assessed on 
the subset left out. We repeated this procedure 5 
times, each time using a different subset for testing. 

 
Fig. 2. Feature extraction using a sliding window for    

finding window for the greatest standard deviation 
 
 

4. EXPERIMENTAL RESULTS 
 

First feature set. Using the “scale-dependent” 
entropy and for a time duration of 10 minutes, we 
achieved a maximum classification rate of 82.5 % 
(for more than one mother wavelet). By reducing the 
time duration to 5 minutes we achieved a 
classification rate of 90 % (90% for the “normal” 
group and 90% for the “abnormal” group). This is 



     

something that we expected since it is in accordance 
with some other results (Georgoulas et al., 2005) 
where for the same data set we used as a global 
statistic the scale dependant standard deviation, and 
achieved the same classification performance. The 
only difference was that in the experiments involving 
the scale-dependent entropy we used biorthogonal 
wavelets and the time duration was 5 minutes, 
whereas in the case of the scale-dependent standard 
deviation, we achieved this rate for symmlets and the 
time duration had to be restricted to 3 minutes. 
 
Second feature set. Using the time-scale features for 
time duration of 10 minutes, we also achieved a 
classification rate of 82.5 % (both for symmlets and 
coiflets (Daubechies, 1994)). However, when the 
time duration was reduced to 5 minutes, the 
maximum classification rate dropped to 80% (using 
coiflets).  
 
Third feature set. The results of this third set were 
worse than the previous two. For time duration of 10 
minutes the maximum classification rate achieved 
was 72.5, and for 5 minutes segments the 
classification performance was slightly improved, 
and equal to 77.5 overall classification rate.      

 
Fig. 3. Best results for the 3 feature sets, for time 

duration equal to a) 10 minutes and b) 5 minutes. 
 
 

5. CONCUSIONS 
 

Among the 3 different feature sets, the first one that 
used of the wavelet coefficients in each scale 
performed very well, compared both to our previous 
findings (Georgoulas et al., 2004a; Georgoulas et al., 
2004b; Georgoulas et al., 2005) and to other groups 
findings (Salamelekis et al., 2002). It seems that 90% 
is close to the upper limit of the classification 
performance concerning this particular data set. We 
suspect that there must be some outliers in this set. 
On the other hand, the other 2 feature sets failed to 

meet our expectations – the results were worse 
compared to those reported in the first set and 
compared to other work (Georgoulas, et al., 2005). 
This is probably an indicator that these features are 
not the best for use in this particular task. The very 
restricted number of cases makes it quite difficult to 
use more features spanning more effectively the 
time-scale plane. 
 
It is mentioned that the indices used to discriminate 
normal fetuses from those which may be at risk, is by 
no means a gold standard. It is known that babies 
with severe acidosis (pH 7.0 or less) will 
subsequently be normal in a percentage of 90%. 
However, this is considered immediate outcomes that 
one would prefer to avoid (Parer, 1997).   
 
Using two distinct thresholds instead of one, which is 
the usual practice, we tried to make sure that the two 
different sets would actually include representative 
cases for normal in the one set and risky to develop 
acidemia in the other set. This approach naturally 
prompted the use of a “binary” classifier. In future 
work we are planning to try a regression approach 
employing cases with umbilical artery pH values also 
spanning the range (7.1, 7.2) that have not been used 
here. However these primarily results indicate that 
algorithmic procedures can be found to discriminate 
normal from acidemic outcome, something that was 
questionable in early 90s (Dawes, 1994). 
 
In conclusion, we must mention that at the beginning 
of the experiments we expected the time-scale 
parameters to perform better than the scale dependent 
global measure of entropy. Thus, it is obvious that 
the time-scale feature selection needs to be refined 
and this is another research direction that we will 
focus on in future work. 
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