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Abstract: Input shaping is a vibration control technique that operates by filtering
reference commands so that the modified (or shaped) command does not excite
the system’s natural frequencies. Usually, input shaping is limited to a filtering
operation outside of any feedback loops. However, this implementation prevents
input shaping from effecting some vital control applications including disturbance
rejection, initial condition response, etc. Therefore, some research has suggested
using input shapers within feedback loops. This paper will present some initial
investigations toward the fundamental understanding of how input shapers utilized
within feedback loops affect closed loop stability. Copyright c©2005 IFAC

Keywords: Command Shaping, Stability, Input Shaping

1. INTRODUCTION

The vibratory control of flexible systems is an
immense field of research. Consequently, there are
many types of vibration control, including PID
control, optimal control, filters, etc. These control
strategies are utilized in a variety of control archi-
tectures, e.g. open-loop control, feedback control,
or feed-forward control. One effective and well-
known form of vibration control is input shap-
ing (Singer and Seering [1990]). This type of
command shaping control has been widely used,
including applications to cranes (Singer et al.
[1997]), coordinate measuring machines (Singhose
et al. [1996]), spacecraft (Singh and Vadali [1993]),
and long reach robots (Magee and Book [1995]).

1.1 Outside-the-Loop Input Shaping Review

Input shaping works by convolving a standard ref-
erence command with a series of impulses specif-
ically designed to eliminate unwanted vibratory
modes. Figure 1 depicts this process by showing
a step command convolved with a two-impulse
shaper to produce a staircase command that re-
sults in zero vibration.

Traditionally, input shaping has been used outside
the feedback control loop. Utilizing input shaping
in this way prevents it from directly addressing
some important vibration control issues such as
disturbances, non-zero initial conditions, actuator
saturation, etc. However, considering the overall
simplicity of input shaping (from both a theoret-
ical and practical/implementation perspective) it
is certainly desirable to investigate whether or not
input shaping can address these phenomena by
including it inside feedback loops.

Another way to view input shaping is to analyze
it in the Laplace domain (Bhat and Miu [1990]).
Here, an input shaper is designed to cancel a
system’s stable poles with the zeros inherent to
the shaper. For instance, a “Zero Vibration” (ZV)
shaper (Smith [1957]), like the one shown in
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Fig. 1. Input Shaping Procedure.



Figure 1, contains two impulses. The first impulse
occurs at time t = 0 with a magnitude of A1.
The second impulse, which has a magnitude of
A2, occurs at some delayed time. In the laplace
domain, the equation for a ZV shaper is:

IZV (s) = A1 + A2e
−st2 (1)

Using s = σ + jω, one can solve for the zeros of
IZV . This will lead to two separate equations that
must be simultaneously satisfied.

A1

A2

= e−σt2 (2)

−1 = e−iωt2 (3)

One solution to these equations is ω = π

t2
and

σ = − 1

t2
lnA1

A2

.

If this shaper is to cancel a set of damped poles,
then ω = ωd (where ωd is the system’s damped
natural frequency). In other words, t2 = π

ωd

. Also,
A1 and A2 must now be set so that σ = −ζωn,
where ζ and ωn are the damping ratio and natural
frequency of the system.

One interesting note that will become important
when input shapers are included within feedback
loops is that this ZV shaper has an infinite number
of zeros. From (3) it is evident that ωt2 can
actually be any odd multiple of π. Therefore,

ω =
±nπ

t2
(where n = 1, 3, 5, ...) (4)

will satisfy (3). This means that an input shaper
actually establishes an infinite column of zeros,
with the first zero usually set to cancel the poles
of the flexible system. This can be seen in Figure
2, which shows the open-loop zeros of an input
shaper designed for ωn = 2π, ζ = 0.

Lastly, it is important to note that a ZV shaper
has no finite, open-loop poles. Only when the real
part of s is −∞ (s = −∞+ jω) does IZV = ∞ in
the laplace domain.

1.2 Closed-Loop Input Shaping

While feedback oriented control problems have
typically been dealt with via PID control and
other classical methods, some work has used input
shapers inside of feedback loops (Calvert and
Sze [1961], Drapeau and Wang [1993], Kapila
et al. [2000], Smith [1958], Staehlin and Singh
[2003], Sze and Calvert [1955], Zuo et al. [1995],
Zuo and Wang [1992]). For instance, Kapila, et
al. designed a closed-loop input shaping (CLIS)
control system to perform well despite modelling
errors and errors in the timing of the shaper
impulses (Kapila et al. [2000]). Zuo, et al. and
Drapeau, et al. designed their own CLIS scheme
(Drapeau and Wang [1993], Zuo et al. [1995], Zuo
and Wang [1992]). They experimentally compared
it to PID control combined with outside-the-
loop input shaping. Finally, they experimentally
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Fig. 2. ZV Shaper Inside a Feedback Loop.
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Fig. 3. Basic CLIS Block Diagram.

demonstrated their CLIS controller’s ability to
reject disturbances.

The most obvious form of closed-loop input shap-
ing would look like the block diagram shown in
Figure 3. Here, C is some feedback controller, G
is the plant, and I is an input shaper designed to
cancel the poles of G. This is the form most often
found in the literature.

Considering input shaping’s success in open-loop
vibration control, it is natural to think that it has
potential to improve a system’s response to distur-
bances, non-zero initial conditions, etc. However,
the presence of time delays within a feedback
loop presents an obvious question of closed-loop
stability. Unfortunately, the literature lacks an in
depth presentation and understanding of the sta-
bility of feedback systems utilizing input shapers
inside the loop. Although, there are a few basic
guidelines for achieving closed-loop stability. For
instance, when analyzing a special class of manip-
ulators, Zuo et. al. established, via a Nyquist anal-
ysis, a desired relationship between the system’s
crossover frequency (ωc) and frequency of vibra-
tion (ωn) to ensure closed-loop stability (Zuo et al.
[1995], Zuo and Wang [1992]). Kapila, et. al., used
Lyapunov stability criterion to show that their
particular CLIS strategy will be asymptotically
stable (Kapila et al. [2000]). Finally, Staehlin and
Singh, who analyzed an undamped, second-order
system, discussed closed-loop stability in terms of
the relationship between the modelled and actual
system frequencies (Staehlin and Singh [2003]).

This paper intends to broaden and deepen the
understanding of closed-loop input shaping from
a stability standpoint. This paper will focus on
the CLIS scheme described in Figure 3, as it
is the most intuitive realization and is the form
most often found in literature. The main goals



are to understand how various system parameters
(damping, natural frequency, proportional gain,
and some classical feedback controllers) affect the
system stability. In addition, modelling errors will
be included in this stability study.

2. ROOT LOCUS AND BODE DIAGRAM

To begin our investigation of CLIS control, it is
important to first understand the basic affects of
adding an input shaper inside a feedback loop.
For example, what would the root locus and Bode
diagram of Figure 3 look like if the plant, G,
was removed and the controller, C, was just a
proportional gain, K? Figure 2 shows the root
locus of a such a system, with the ZV shaper de-
signed to cancel the oscillatory dynamics ωn = 2π
and ζ = 0. Note that Figure 2, as well as the
remaining root locus plots within this paper, only
show the closed-loop poles up to a finite K value.
In addition, for simplicity’s sake, all root locus
plots in this paper are restricted to quadrants
one and two of the imaginary plane. The main
point to notice from Figure 2, is that when in-
put shapers are included within feedback loops,
they will introduce oscillatory, closed-loop poles.
Depending upon the exact control scheme used,
these dynamics (arising purely from the input
shaper) can be a significant source of oscillatory
and/or unstable dynamics for the overall closed-
loop system.

Another way to analyze this effect is with the
open-loop Bode diagram. The Bode diagram of
a ZV shaper, again tuned for ωn = 2π and ζ = 0,
is shown in Figure 4. The discontinuity in the
phase plot of the input shaper is a consequence of
the shaper zeros lying directly on the imaginary
axis (Figure 2). In terms of the Nyquist plot, this
results in vectors of magnitude zero (i.e. the angle
is undefined), and hence the phase discontinuities.

3. CLOSED-LOOP STABILITY WITH A
SECOND-ORDER PLANT

A second-order system is relatively simple, yet it
can give important insight into more complicated
systems. Therefore, it is useful to study the sta-
bility issues inherent to the control system shown
in Figure 3 when

G =
ω2

n

s2 + 2ζωns + ω2
n

. (5)

3.1 Natural Frequency Modelling Error

In order to study the effects of modelling error, the
plant natural frequency will be defined as ωn and
the frequency used to design the shaper will be
defined as ωs. Note that the controller, C, is just
a proportional controller (C = K). If the shaper
is exactly tuned to the plant frequency, then the
root locus will be similar to that shown in Figure
5. Here again, the plant parameters are ωn = 2π
and ζ = 0.
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Fig. 4. Bode Diagram of a ZV Shaper.
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Fig. 5. Root Locus with pole/zero cancellation.

Examining the effects of modelling error, a basic
pattern begins to emerge. If ωn < ωs, then the
root locus is as shown in Figure 6. Clearly, the
root locus branch extending from the plant poles
goes unstable immediately. However, if ωn > ωs,
this branch remains stable. This can be seen in
the Figure 7.

This pattern continues as the plant pole is moved
along the imaginary axis. When the pole is below
the shaper zero to which it is closest, the branch
extending from the plant pole is unstable. How-
ever, when the pole is above the zero to which it is
closest, then the branch extending from the plant
pole is initially stable. Note that Staehlin and
Singh found a similar oscillating stability result
in their CLIS control scheme (Staehlin and Singh
[2003]).

3.2 Effects of K, ζ, and Lead Compensator

By increasing the gain, this system will eventually
be driven unstable in all cases. For example,
Figure 7 shows a system, with some modelling
error, that is initially stable. However, as shown
in Figure 8, when K is further increased, the
root locus branches arising from the input shaper
go unstable. This is an excellent example of the
impact that the input shaper can have on the
closed-loop system. While the dynamics arising
from the plant were always stable, it was the
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Fig. 6. Root Locus where ωn < ωs.
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Fig. 7. Root Locus where ωn > ωs.
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Fig. 8. Root Locus with High K Value.

input shaper’s dynamics that eventually drove the
closed-loop system unstable.

When the second-order plant has damping, the
regions of stability are increased. Figure 9 shows
this effect on a root locus plot. By increasing ζ,
the root locus branches are shifted to the left.

Including a lead compensator in the controller,

C = K
s + z

s + p
, (6)

−1 −0.5 0 0.5 1
4

4.5

5

5.5

6

6.5

7

Real

Im
ag

Increasing zeta 

Fig. 9. Effect of Increased System Damping.

−4 −3 −2 −1 0 1 2
0

5

10

15

20

Real

Im
ag

With Lead Comp 

No Lead Comp   

Fig. 10. Influence of Lead Compensator.

adds even more stability to the closed-loop sys-
tem. Figure 10 shows how the root locus branches
are pulled to the left by the lead compensator
dynamics. Therefore, increasing ζ or adding a lead
compensator will allow the closed-loop system to
have larger K values and/or larger modelling er-
rors and yet still remain stable.

4. FOURTH-ORDER SYSTEM

In order to analyze a more complicated system,
the damped mass-spring-mass system shown in
Figure 11 was investigated. Here, only collocated
control was analyzed. The block diagram of the
control system is depicted in Figure 12. The
transfer functions X

F
and Y

X
are:

X

F
=

1

M1

s2 + 2ζ2ω2s + ω2

2

s2(s2 + 2ζ1ω1s + ω2

1
)

(7)

Y

X
=

2ζ2ω2s + ω2

2

s2 + 2ζ2ω2s + ω2

2

(8)

where:

ω1 =

√

K
M1 + M2

M1M2

ω2 =

√

K

M2

(9)
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Fig. 11. Mass-Spring-Mass System.
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Fig. 12. Block Diagram of Collocated System.
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Fig. 13. Root Locus without Input Shaper.

2ζ1ω1 = b
M1 + M2

M1M2

2ζ2ω2 =
b

M2

(10)

Because the input shaper is included within the
feedback loop, it is designed to cancel the open-
loop dynamics of X

F
. Therefore, since X

F
has only

one open-loop, oscillatory mode (ω1, ζ1), a single
mode ZV shaper was chosen.

4.1 Root Locus Analysis

When the closed-loop system shown in Figure 12
is simplified so that it contains no input shaper
and has only a proportional gain, the system’s
root locus is as shown in Figure 13. Clearly, this
system is closed-loop stable. Note that, assuming
both (ω1, ζ1) and (ω2, ζ2) form underdamped dy-
namics, the root locus shown in Figure 13 is one
of only two possible basic shapes - both of which
are stable.

If an input shaper is added to the closed-loop
system, then the root locus becomes as shown
in Figure 14. Even with small K values, the
system is unstable. However, if C contains a lead
compensator in addition to proportional control,
then stability can be achieved. An example of this
effect is shown in Figure 15. As a result of adding
the lead compensator, this root locus shows large
regions of stability.
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Fig. 14. Root Locus of Complete Control System.
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Fig. 15. Root Locus with a Lead Compensator.

4.2 Modelling Errors

To verify the general stability of closed-loop in-
put shaping of a fourth-order system with a lead
compensator, the effect of modelling errors was
analyzed. If the complex poles of X

F
are perfectly

modelled, then the ZV shaper could theoretically
be tuned such that full pole/zero cancellation oc-
curs. This is shown in Figures 14 and 15. However,
this exact modelling is never possible. For the
case where the shaper frequency (ωs) is smaller
than the plant frequency (ω1), the resulting root
locus can be seen in Figure 16. As expected from
the study of second-order systems, this scenario
results in a root locus branch from the plant
pole that departs to the left. This scenario usu-
ally does not greatly decrease stability. However,
if the shaper frequency is larger than the plant
frequency, then the root locus branch originating
from the plant pole departs to the right (as shown
in Figure 17). With second-order systems, this
scenario often caused significant stability prob-
lems. However, in this fourth-order system, the
plant pole is now located between two zeros - one
from the input shaper and one from the plant’s
numerator dynamics. For this reason, stability is
not degraded to the extent seen in second-order
systems. According to Figure 17, even for large
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Fig. 16. Root Locus of System with ωs < ω1.

−0.5 0 0.5
0

1

2

3

4

5

6

7

Real

Im
ag

Plant/Lead Comp.    
Poles and Zeros     

Input Shaper    
Zeros           

Fig. 17. Root Locus of System with ωs > ω1.

values of K, the root locus branch extending from
the plant pole remains stable.

5. CONCLUSIONS AND FUTURE WORK

While some previous research has demonstrated
the effectiveness of closed-loop input shaping (e.g.
disturbance rejection), this paper has presented
an in depth stability study of closed-loop input
shaping control. The analysis has shown, from a
classical controls perspective, why a CLIS con-
troller often has stability problems, what parame-
ters often influence instability, and how CLIS con-
trollers can be made stable even in the presence
of modelling errors.

While this paper examined only 2nd and 4th-order
systems, one can extrapolate some preliminary
guidelines for designing a CLIS control system of
the form shown in Figure 3. Of primary impor-
tance is to recognize that an input shaper within
the feedback loop will add its own poles to the
closed-loop system. Therefore, even if the closed-
loop poles arising from the plant open-loop poles
remain stable, the overall closed-loop system can
still be unstable. Fortunately, some basic control
system properties still hold in the case of CLIS.
That is, high gains tend to result in instability,
but damping and stability enhancing controllers
(i.e. lead compensators) improve stability.

A preliminary procedure for designing CLIS
schemes would be to use a Root Locus or Bode
analysis tool to observe the closed-loop system’s
full dynamics and adjust system parameters based
upon the knowledge of their effect to ensure
closed-loop stability within a desired range of pa-
rameter uncertainty or variation.

Future work is needed to extend this understand-
ing to other common systems and to other forms
of CLIS, as well as to experimentally verify the
findings presented in this paper.

6. ACKNOWLEDGEMENTS

The authors would like to thank Northrop-
Grumman for their support of this project.

REFERENCES

S. P. Bhat and D. K. Miu. Precise point-to-point position-
ing control of flexible structures. J. of Dynamic Sys.,
Meas., and Control, 112(4):667–674, 1990.

John F. Calvert and Tsung W. Sze. Short-time memory
devices in closed-loop systems, Nov. 21, 1961 1961.

Vincent Drapeau and David Wang. Verification of a closed-
loop shaped-input controller for a five-bar-linkage ma-
nipulator. In IEEE Conf. on Robotics and Automation,
pages 216–221, Atlanta, Ga, 1993.

Vikram Kapila, Anthony Tzes, and Qiguo Yan. Closed-
loop input shaping for flexible structures using time-
delay control. Journal of Dynamic Systems, Measure-
ment, and Control, 122:454–460, September 2000.

David P. Magee and Wayne J. Book. Filtering micro-
manipulator wrist commands to prevent flexible base
motion. In American Control Conf., pages 924–928,
Seattle, WA, 1995.

Neil Singer, William Singhose, and Eric Kriikku. An input
shaping controller enabling cranes to move without
sway. In ANS 7th Topical Meeting on Robotics and
Remote Systems, volume 1, pages 225–231, Augusta,
GA, 1997.

Neil C. Singer and Warren P. Seering. Preshaping com-
mand inputs to reduce system vibration. J. of Dy-
namic Sys., Measurement, and Control, 112(March):
76–82, 1990.

T. Singh and S. R. Vadali. Input-shaped control of three-
dimensional maneuvers of flexible spacecraft. J. of
Guidance, Control, and Dynamics, 16(6):1061–8, 1993.

William Singhose, Neil Singer, and Warren Seering. Im-
proving repeatability of coordinate measuring machines
with shaped command signals. Precision Engineering,
18(April):138–146, 1996.

O. J. M. Smith. Posicast control of damped oscillatory
systems. Proceedings of the IRE, 45(September):1249–
1255, 1957.

O. J. M. Smith. Feedback Control Systems. McGraw-Hill
Book Co., Inc., New York, 1958.

U. Staehlin and T. Singh. Design of closed-loop input
shaping controllers. In American Control Conference,
pages 5167–5172, Denver, Co, June, 2003 2003.

Tsung W. Sze and John F. Calvert. Short-time memory
devices in closed-loop system – steady-state response.
In AIEE Fall General Meeting, pages 340–344, Chicago,
Ill., October 1955.

Kai Zuo, Vincent Drapeau, and David Wang. Closed
loop shaped-input strategies for flexible robots. The
International Journal of Robotics Research, 14(5):510–
529, October 1995.

Kai Zuo and David Wang. Closed loop shaped-input
control of a class of manipulators with a single flexible
link. In IEEE International Conference on Robotics and
Automation, pages 782–787, Nice, France, May 1992.


