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Abstract: In this paper the robust positivity of polynomials under coefficient
perturbation is investigated. This robust positivity of polynomials can be used for
polynomial systems in order to determine the robust asymptotic stability of the
system. It is assumed that the polynomials under investigation depend linearly on
some parameters. The aim in the article is to determine the parameter perturbation
region as a hypersphere, for which the polynomial is globally positive. The theorem
of Ehlich and Zeller is used to achieve this aim. This theorem enables to give
conditions in the parameter space for global positivity. These conditions are linear
inequalities. By means of these inequalities an inner and an outer approximation
are calculated to the relevant perturbation region which is a hypersphere. Two
nontrivial examples conclude the paper and show the effectiveness of the presented
method. Copyright c© 2005 IFAC
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1. INTRODUCTION

In this paper the problem of global positivity of
polynomials depending linearly on uncertain pa-
rameters (Bose and Guiver, 1980; Djaferis, 1991;
Tibken and Dilaver, 2001; Tibken and Dilaver,
2003; Tibken et al., 2003) will be dealt with.
Generally a polynomial can be written as

p(x) =

s
∑

i=1

pαi
xαi , x ∈ R

m (1)

where xαi =
∏m

j=1 x
αij

j is the i-th monomial
of the polynomial p(x), pαi

is the coefficient of
the i-th monomial and s is the number of the
monomials in the polynomial. The definitions of

the degree of the i-th monomial and the degree of
the polynomial p(x) are as

| αi |=

m
∑

j=1

αij , (2)

deg p(x) = max | αi | , i = 1, . . . , s (3)

respectively, where αij is either a positive entire
number or zero. Such a polynomial that depends
linearly on some parameters can be written with
respect to the uncertainties at the parameters as

p(x) = p0(x) +

r
∑

i=1

ki pi(x) , x ∈ R
m (4)



where ki, i = 1, . . . , r, represents the uncertainty
at the i-th parameter. The investigations in this
paper are necessary, for example, when analyzing
global asymptotical stability of polynomial dy-
namical systems (Gahinet et al., 1996; Wu and
Mansour, 1995). In this work it will be used
the theorem of Ehlich and Zeller (Ehlich and
Zeller, 1964) and developed an algorithm in order
to compute the maximum domain as a hyper-
sphere in the parameter space for which a given
polynomial is globally positive. In the developed
algorithm it is assumed that the polynomial p0(x)
in (4) is globally positive in the m dimensional
space. Therefore the hyperspherical region of the
parameter space for which the considered polyno-
mial is strictly positive, can be defined as the set

Ω := { k ∈ R
r | ‖k‖ ≤ R } (5)

where k is the parameter vector and ‖.‖ denotes
its Euclidean norm. The goal is to compute the
maximum R such that p(x) is globally positive
for ∀k ∈ Ω.

First of all the theorem of Ehlich and Zeller is
introduced and then polynomial homogenization
will be discussed which is necessary for the ap-
plication of this theorem. By means of homoge-
nization the whole R

m-space (m is the number
of the variables in the polynomial) is reduced
into a hyperrectangle in the R

m+1 space. If the
homogenized polynomial is positive on a subset of
the boundary of the hyperrectangle, the original
polynomial is globally positive. This property will
be proved and used in order to determine the
parameter region Ω for which the polynomial is
globally positive. In the third section the algo-
rithm is presented and is illustrated with two
examples in the fourth section. Conclusions and
an outlook will finish the paper.

2. THEOREM OF EHLICH AND ZELLER

This section will closely follow the corresponding
section in (Ehlich and Zeller, 1964; Tibken and
Dilaver, 2003; Tibken and Dilaver, 2004; Tibken
et al., 1999). In the following J = [a, b] denotes a
nonempty compact real interval with J ⊂ R. The
set of Chebychev points in J is defined for a given
natural number N > 0 by

x(N, J) := { x1 , x2 , ... , xi , ... , xN } (6)

where

xi :=
a + b

2
+

b − a

2
cos

(

(2i − 1)π

2N

)

. (7)

For a continuous function h defined on a set I the
norm

||h||I := max
x∈I

|h(x)| (8)

which is the usual maximum norm, is utilised. Let
pn be the set of polynomials p in one variable with
deg p = n. Then the following inequality

‖p‖J ≤ C
( n

N

)

‖p‖x(N,J) (9)

with N > n and

C(q) :=

[

cos(q
π

2
)

]−1

, 0 < q < 1 , (10)

is valid for every p ∈ pn and every nonempty
compact interval J . Inequality (9) is remarkable
because the norm ‖p‖x(N,J) on the right hand side
of (9) depends on the values of p at the Chebychev
points only. This result was given by Ehlich and
Zeller in (Ehlich and Zeller, 1964). Using (9) the
following inequalities

pJ
min ≥

1

2

{

(

C
( n

N

)

+ 1
)

p
x(N,J)
min −

(

C
( n

N

)

− 1
)

px(N,J)
max

}

, (11)

pJ
max ≤

1

2

{

(

C
( n

N

)

+ 1
)

px(N,J)
max −

(

C
( n

N

)

− 1
)

p
x(N,J)
min

}

(12)

which are valid for every p ∈ pn and N > n

are given by Gärtel in (Gärtel, 1987). In the
inequalities pJ

min := minx∈J p(x) and pJ
max :=

maxx∈J p(x) are the minimum and maximum of

p in the set J respectively. Similarly p
x(N,J)
min :=

minx∈x(N,J) p(x) and p
x(N,J)
max := maxx∈x(N,J) p(x)

are the minimum and maximum of p in the set of
Chebychev points respectively. For trigonometric
polynomials and for rational functions similar
inequalities are given by Gärtel (Gärtel, 1987).

The inequalities (9),(11),(12) are valid for polyno-
mials in one variable. They are extended to poly-
nomials of several variables using the following
replacements. The interval J is replaced by

Ĵ = [a1, b1] × [a2, b2] × · · · × [am, bm] (13)

which represents a hyperrectangle. For the degree
of p with respect to the i-th variable xi the abbre-
viation ni is introduced and the set of Chebychev
points in Ĵ is given by

x(N̂ , Ĵ) := x(N1, [a1, b1]) × · · ·

· · · × x(Nm, [am, bm]) (14)

where Ni is the number of Chebychev points for
the i-th variable xi in the interval [ai, bi]. Then
the inequalites



pĴ
min ≥

1

2

{

(K + 1) p
x(N̂,Ĵ)
min −

(K − 1) px(N̂,Ĵ)
max

}

(15)

pĴ
max ≤

1

2

{

(K + 1) px(N̂,Ĵ)
max −

(K − 1) p
x(N̂,Ĵ)
min

}

(16)

with

K =

m
∏

i=1

C

(

ni

Ni

)

(17)

under the conditions Ni > ni, i = 1, ..., m, are
valid. The theorem of Ehlich and Zeller is used and
applied in the next section and then it is showed
that if a homogenized polynomial is positive on a
subset of the boundary of the hyperrectangle, the
original polynomial is globally positive. By means
of this property the uncertain parameter region
Ω for which the polynomial p(x) (4) is globally
positive can be determined.

3. APPROXIMATION METHOD

The theorem of Ehlich and Zeller helps to analyze
the positivity of polynomials on finite intervals.
Investigating the positivity of a polynomial p(x)
on R

m is the goal and some calculations should be
done in order to apply the theorem of Ehlich and
Zeller in this case. The main tool is homogeniza-
tion, i.e. for every polynomial p(x) the polynomial
p̃(x) is introduced which is defined according to
the following expression.

p̃(x) := x0
deg p(x) p(

x1

x0
, . . . ,

xm

x0
) , (18)

=
s

∑

i=1

p̃αi
xα̃i , x ∈ R

m+1 (19)

Each monomial of the polynomial p̃(x) has the
same degree

| α̃i | = deg p(x) , i = 1, . . . , s . (20)

Here | α̃i | represents the degree of the i-th mono-
mial in the polynomial p̃(x). The positivity of p̃(x)
and p(x) is related by the following equivalence.

p̃(x) > 0 ∀ x ∈ R
m+1 with x0 > 0 ⇐⇒

p(x) > 0 ∀ x ∈ R
m (21)

Thus, in order to test p(x) for positivity in R
m

the polynomial p̃(x) can alternatively be tested for

its positivity in R
m+1 under the further condition

x0 > 0. The following equation

p̃(λ x) = λdeg p(x) p̃(x) , ∀ λ ∈ R (22)

is valid due to homogeneity of p̃(x). It follows that
if λ > 0, then p̃(λ x) and p̃(x) have the same sign.
If the positive number λ is chosen as

λ :=

(

max
i=0, ..., m

| xi |

)−1

, (23)

the vector (λ x) is on the boundary of the hyper-
cube H defined by

H := H−

00 ∪ H+
00 ∪ · · · ∪ H−

m0 ∪ H+
m0 (24)

with

H−

j0 := { x ∈ R
m+1 | xj = −1 , −1 ≤ xi ≤ 1 ,

i 6= j , i = 0, . . . , m } , j = 0, . . . , m(25)

H+
j0 := { x ∈ R

m+1 | xj = +1 , −1 ≤ xi ≤ 1 ,

i 6= j , i = 0, . . . , m } , j = 0, . . . , m.(26)

Thus the test of p̃(x) for positivity in R
m+1 under

the condition x0 > 0 is reduced to positivity test
of p̃(x) of that part of the boundary of H for which
x0 > 0 is fulfilled. This boundary consists of a
finite number of hyperrectangles defined by

H0 := { x ∈ R
m+1 | x0 = 1 , −1 ≤ xi ≤ 1 ,

i = 1, . . . , m } (27)

H∓

j := { x ∈ R
m+1 | xj = ∓1 , 0 < x0 ≤ 1 ,

−1 ≤ xi ≤ 1 , i 6= j , i = 1, . . . , m } ,

j = 1, . . . , m (28)

and thus the theorem of Ehlich and Zeller can
be applied to every part of this boundary. In-
equality (15) is used to ensure the positivity of
p̃(x) on H0,H

+
1 ,H−

1 , . . . ,H+
m,H−

m. If for every

hyperrectangle Ĵ ∈ {H0, H
+
1 , H−

1 , . . . , H+
m, H−

m}
in this boundary the inequality

(K + 1) p̃
x(N̂,Ĵ)
min − (K − 1) p̃x(N̂,Ĵ)

max > 0 (29)

is fulfilled, the polynomial p̃(x) is positive definite
on the boundary of the hyperrectangle in R

m+1

for which x0 is greater than zero. Due to (21) and
(22) the polynomial p(x) is global positive in R

m.
In case that

(K + 1) p̃
x(N̂,Ĵ)
min − (K − 1) p̃x(N̂,Ĵ)

max > 0 (30)

on the set Ĵ , the inequalities



(K + 1) p̃(xi) − (K − 1) p̃(xj) > 0 , (31)

i, j = 1, . . . , N̂

are valid for all i, j due to fact that

p̃
x(N̂,Ĵ)
min ≤ p̃(xi) ≤ p̃x(N̂,Ĵ)

max , (32)

i = 1, . . . , j, . . . , N̂

where xi, xj ∈ X(N̂, Ĵ) are two Chebychev

points in the same hyperrectangle. For N̂ Cheby-
chev points in one hyperrectangle there are N̂2

inequalities of type (31) which are equivalent to
(29). Since (2m + 1) hyperrectangles exist to be
checked, the total number of the inequalities is
(2m + 1)N̂2. If the polynomial p(x) depends lin-
early on some uncertain parameters k1, . . . , kr as
in (4), then the polynomial p̃(x) can be written as

p̃(x) = p̃0(x) +

r
∑

i=1

ki p̃i(x) (33)

and the inequalities (31) can be represented as

ai,j
r kr + . . . + a

i,j
1 k1 + a

i,j
0 > 0

, i, j = 1, . . . , N̂ (34)

with

a
i,j
t = (K + 1) p̃t(xi) − (K − 1) p̃t(xj),

t = 0 , . . . , r , i, j = 1 , . . . , N̂(35)

where kt, t = 1, . . . , r, denotes the t-th uncertain
parameter in the polynomial p(x) and a

i,j
t , t =

0, . . . , r, i, j = 1, . . . , N̂ , is constant. For the
values of the kt’s that satisfy the N̂2 inequalities
in (34) for each hyperrectangle H0,H

+
1 ,H−

1 , . . .

,H+
m,H−

m, the polynomial p(x) is globally positive
definite. From the inequalities (34) we get an inner
approximation to the convex set

Ω = { k ∈ R
r | ‖k‖ ≤ R } . (36)

Because the inequalities (34) are the sufficient
conditions for the strict positivity of the poly-
nomial p(x). An outer approximation to Ω is
achieved if only the N̂ inequalities

p̃(xi) = p̃r(xi)kr + p̃r−1(xi)kr−1 + . . .

+ p̃1(xi)k1 + p̃0(xi)

= ai
r kr + ai

r−1 kr−1 + . . .

+ ai
1 k1 + ai

0 > 0, i = 1, . . . , N̂ (37)

for each hyperrectangle H0,H
+
1 ,H−

1 , . . . ,H+
m,H−

m

are taken into account at the Chebychev points.
The total number of the inequalities for the outer
approximation is (2m+1)N̂ . Since the inequalities
(37) are the necessary conditions for the strict

positivity, by means of the solutions of the in-
equalities in (37) an outer approximation can be
determined to the set Ω. Thus, using the theorem
of Ehlich and Zeller it is possible to find an inner
and an outer approximation to Ω.

The inequalities in (34) and (37) are in the form

ar kr + . . . + a1 k1 + a0 > 0 (38)

where the coefficient aj , j = 0, . . . , r, is known and
constant. Because it is a function of the Cheby-
chev points in the hyperrectangles H0,H

+
1 ,H−

1 , . . .

,H+
m,H−

m.

In the approximation method the following ques-
tion is firstly answered. ”How could the maxi-
mal hyperspherical parameter region (5) be de-
termined, if there was only one inequality of type
(38)”. In order to find a answer to this problem
the objective

R∗ := min
√

k2
1 + k2

2 + . . . + k2
r (39)

under the constraint

ar kr + . . . + a1 k1 + a0 = 0 (40)

must be solved. The solution of this optimization
problem is

R∗ =
|a0|

√

a2
1 + a2

2 + . . . + a2
r

. (41)

Thus for inequalities of type (34) which represent
the sufficient conditions for the strict positivity of
the original polynomial , an inner approximation

Ωin := { k ∈ R
r | ‖k‖ ≤ Rin } (42)

to the set (5) is determined with

Rin = min
(

Ri
∗

)

, i = 1, . . . , (2m + 1)N̂2 (43)

where Ri
∗ indicates the solution of the optimiza-

tion problem (39) under the constraint

ai
r kr + . . . + ai

1 k1 + ai
0 = 0 . (44)

Similarly an outer approximation

Ωout := { k ∈ R
r | ‖k‖ ≤ Rout } (45)

is found for (2m + 1)N̂ inequalities which are the
necessary conditions for the strict positivity of the
polynomial p(x) (4) by means of

Rout = min
(

Ri
∗

)

, i = 1, . . . , (2m + 1)N̂ . (46)

The value of the radius R of the hyperspherical
region Ω lies in the interval [Rin, Rout] and the



set Ω lies between the sets Ωin and Ωout. This
numerical method ensures the global positivity of
the polynomial p(x) (4) for the parameter values
in the set Ωin. In the next section there are two
nontrivial examples that illustrate the presented
method.

4. EXAMPLES

4.1 Example 1

In the following example the number of variables
of the main polynomial is one and the relevant
hyperrectangles are a subset of the edges of the
unit square which are given by

H0 = {x | x0 = 1, −1 ≤ x1 ≤ 1} , (47)

H+
1 = {x | x1 = 1, 0 < x0 ≤ 1} , (48)

H−

1 = {x | x1 = −1, 0 < x0 ≤ 1} . (49)

The numerical method will be tested with the
polynomial

p(x) = (1 + k1)x
4
1 − (2 + k2)x

3
1 + (1 + k3)x

2
1

+ (5 + k4) (50)

that is taken from (Bose and Guiver, 1980). After
the transformation the homogenized polynomial

p̃(x) = (1 + k1)x
4
1 − (2 + k2)x0x

3
1 +

(1 + k3)x
2
0x

2
1 + (5 + k4)x

4
0

= (x4
1 − 2x0x

3
1 + x2

0x
2
1 + 5x4

0) + k1x
4
1 −

k2x0x
3
1 + k3x

2
0x

2
1 + k4x

4
0 (51)

is obtained.

Fig.1 shows the inner and outer approximations
to the value of R depending on the number of
Chebychev points on the sets H0, H+

1 and H−

1 . For
100 Chebychev points per variable the following
interval

Rin = 0.4433 ≤ R ≤ Rout = 0.4473 (52)

was found for the value of the maximum radius
R.

4.2 Example 2

In the works of Bose (Bose, 1982) and Parrilo
(Parrilo, 2000) it was proven that the polynomial

p(x) = x4
1 − 2x2

1x2x3 − x2
1 + x2

2x
2
3

+ 2x2x3 + 2 (53)
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Fig. 1. Inner and outer approximations to the
maximum radius R.

is globally positive. Thus the parameter pertur-
bation region for the given polynomial (53) can
be determined as a hypersphere. Therefore the
numerical method will be tested in this example
with the polynomial

p(x) = (1 + k1)x
4
1 − (2 + k2)x

2
1x2x3

− (1 + k3)x
2
1 + (1 + k4)x

2
2x

2
3

+ (2 + k5)x2x3 + (2 + k6) . (54)

After the transformation the homogenized poly-
nomial

p̃(x) = (1 + k1)x
4
1 − (2 + k2)x

2
1x2x3 −

(1 + k3)x
2
0x

2
1 + (1 + k4)x

2
2x

2
3 +

(2 + k5)x
2
0x2x3 + (2 + k6)x

4
0

= (x4
1 − 2x2

1x2x3 − x2
0x

2
1 + x2

2x
2
3 + 2x2

0x2x3

+2x4
0) + k1x

4
1 − k2x

2
1x2x3 − k3x

2
0x

2
1

+ k4x
2
2x

2
3 + k5x

2
0x2x3 + k6x

4
0 (55)

is obtained. According to the presented method
the homogenized polynomial p̃(x) must be pos-
itive definite in the relevant hyperrectangles H0,
H+

1 , H−

1 , H+
2 , H−

2 , H+
3 and H−

3 defined by means
of (27) and (28).

Fig.2 shows the inner and outer approximations
to the value of R depending on the number of
Chebychev points on the sets H0, H+

1 , H−

1 , H+
2 ,

H−

2 , H+
3 and H−

3 . For 100 Chebychev points per
variable the following interval

Rin = 0.3132 ≤ R ≤ Rout = 0.3160 (56)

was found for the value of the maximum radius
R.
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Fig. 2. Inner and outer approximations to the
maximum radius R.

5. CONCLUSIONS AND OUTLOOK

In this paper the positivity of polynomials de-
pending on uncertain parameters has been inves-
tigated. By means of the theorem of Ehlich and
Zeller a new algorithm has been developed that
defines the parameter region as a hypersphere
where a polynomial p(x) is positive definite. The
examples presented in this paper illustrate the
result which can be achieved with this new algo-
rithm. In contrast to other methods our method is
able to produce inner and outer approximations to
the set Ω and relies entirely on linear inequalities.
This offers the possibility of using methods from
linear programming in the case of higher param-
eter dimension. This will be the focus of future
research.
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