
A ROBUST VERSION OF THE ELIMINATION

LEMMA

M. C. de Oliveira

University of California San Diego

Department of Mechanical and Aerospace Engineering

9500 Gilman Dr, La Jolla, CA, USA, 92093-0411

mauricio@ucsd.edu

AbstractIn this paper we extend the elimination lemma to hold for a set of
inequalities. The elimination lemma is a linear algebra result which has been
successfully used to solve a large number of filtering and control problems. We
show that the obtained extension can be used to provide alternative solutions to
robust state feedback control and robust filtering problems when the uncertainty
is described by a convex polytope. We also investigate some conjectures which, if
true, would be able to solve an open problem in dynamic output feedback robust
control. We provide counter-examples to these conjectures.
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1. INTRODUCTION

The following linear algebra result, known as
Elimination Lemma, has been extensively used in
systems and control.

Lemma 1. (Elimination). Let Q ∈ S
n, B ∈

R
m×n, and C ∈ R

p×n be given matrices. The
following statements are equivalent:

i) (B⊥T
QB⊥ < 0 or BT B > 0)

and (C⊥T
QC⊥ < 0 or CT C > 0),

ii) ∃K ∈ R
p×m : Q + CT KB + BT KT C < 0.

See, for instance, (Boyd et al., 1994; Skelton et

al., 1997) for a proof and applications.

Several linear filtering and control design prob-
lems can be stated in the form ii), where K
represents the parameters of the filter or controller
to be designed and Q, B and C are functions of
an instrumental symmetric and positive definite
matrix coming from Lyapunov stability theory. In

many cases, it is possible to show that even if the
matrix inequality in ii) is not jointly convex on
K and the instrumental Lyapunov matrix, the set
of solutions for the inequalities given in i) will
be convex. In fact, this is the idea behind the
entire book (Skelton et al., 1997), which shows
that more than twenty relevant control problems
can be solved with the help of Lemma 1, produc-
ing inequalities in the form of item i) which are
linear functions of the instrumental variables. This
particular class of inequalities has been known in
the control literature as Linear Matrix Inequali-
ties (LMI). Other widely referenced results that
make use of the elimination lemma, to name a
few, are (Gahinet and Apkarian, 1994; Iwasaki
and Skelton, 1994; Apkarian and Gahinet, 1995;
Scherer, 1995). Recently, this result has also been
used in converse form, starting from inequalities
in the form i) and producing an inequality in the
form ii) affine on an extra variable K (multiplier),
as in (de Oliveira and Skelton, 2001).



Unfortunately, Lemma 1 has several limitations
which prevent its application to many robust fil-
tering and control design problems. In this con-
text, it would be desirable to have a “robust
version” of this lemma, which would be able to
eliminate the variable K from the set of inequali-
ties

∃K ∈ R
p×m : Qi + CT

i KBi + BT
i KT Ci < 0 (1)

for all i = 1, . . . , N . The challenge here is the fact
that a single K should simultaneously satisfies
all N inequalities. For instance, in the context
of robust control design, K could represent a
robust controller, which is able to stabilize a
family of N given plants or, under some extra
mild assumptions on the matrices Qi, Bi, and Ci,
to stabilize all convex combinations of the given
N plants.

This paper investigates whether appropriate ver-
sions of Lemma 1 can be constructed for in-
equalities in the form (1) or some variations. In
particular, we establish a necessary and sufficient
elimination under the assumption that Bi = B,
Ci = C, for all i = 1, . . . , N . We show that this
result is already enough to provide alternative
solutions to robust control and filtering problems
addressed in the literature. We also prove that
several conjectures that can be constructed from
straightforward variations of Lemma 1 to handle
sets of inequalities in the form (1) are not correct.

2. A ROBUST ELIMINATION RESULT

On of the results of this paper is to establish the
following extension to Lemma 1.

Theorem 1. (Robust Elimination). Let Qi ∈ S
n,

i = 1, . . . , N , B ∈ R
m×n, and C ∈ R

p×n be given
matrices. The following statements are equivalent:

i) ∃Q0 ∈ S
n : (B⊥T

Q0B
⊥ < 0 or BT B > 0),

(C⊥T
Q0C

⊥ < 0 or CT C > 0), and
Q0 ≥ Qi, ∀i = 1, . . . , N ,

ii) ∃K ∈ R
p×m : Qi + CT KB + BT KT C < 0,

∀i = 1, . . . , N .

A proof of this theorem is given in Appendix A.
In the above theorem, the variable K has been
indeed eliminated from the inequalities in item
i). However, another variable Q0 had to be in-
troduced. We will discuss some issues related to
this fact later in Section 5.

The above result can be applied to provide al-
ternative solutions to many robust state feedback
control and robust filtering design problems avail-
able in the literature. We illustrate this here by
revisiting the problem of robust filtering.

2.1 Robust filtering

Consider the uncertain linear time-invariant sys-
tem

(

ẋ
z

)

= M

(

x
w

)

, (2)

where x ∈ R
n, w ∈ R

r, z ∈ R
p, and the matrix

M :=

[

F G
Hz Jz

]

(3)

is unknown but lies in the convex hull of the finite
set of vertices Mi, i = 1, . . . , N . All measurements
taken from the above system are represented in
the measurement equation

y = Hyx + Jyw, (4)

where y ∈ R
q. As in (Geromel and de Oliveira,

2001), we connect to the above measurement a
linear filter with structure

(

˙̂x
ẑ

)

= M̂

(

x̂
y

)

, (5)

where x̂ ∈ R
n and ẑ ∈ R

p and

M̂ :=

[

F̂ Ĝ

Ĥ Ĵ

]

. (6)

The particular robust filtering problem we will
address here is the computation of a robust filter
such that an upper bound to the H∞ norm of the
transfer function from the input w to the filtering
error e := z − ẑ is less than a prespecified value
µ. The same technique can however be applied to
similar problems, such as robust H2 filtering, as
well. We assume that the filter has the same order
as the plant.

The filtering error e can be described by the
uncertain linear system

(

˙̄x
e

)

= M

(

x̄
w

)

(7)

where

M =

[

F G
H J

]

, (8)

is unknown but lies in the convex hull of the finite
set of vertices defined by

Fi =

[

Fi 0

ĜHy F̂

]

, Gi =

[

Gi

ĜJy

]

, (9)

Hi =
[

Hzi − ĴHy −Ĥ
]

, Ji =
[

Jzi − ĴJy

]

,

(10)

for i = 1, . . . , N .

The H∞ norm of the transfer function from the
input w to the filtering error e is less than µ if
and only if the inequalities (from the Bounded
Real Lemma (Skelton et al., 1997))





FT
i P + PFi PGi HT

i

GT
i P −µ J T

i

Hi Ji −µ



 < 0, (11)

have a solution for some symmetric matrix P > 0
and all i = 1, . . . , N . To simplify our discussion



we assume that P has the particular partitioning
structure

P :=

[

Z Y
Y Y

]

.

This assumption can be imposed without loss of
generality (see (Skelton et al., 1997), p. 143, for
instance). One can then show that (11) can be
decomposed in the form of the inequalities in
item ii) of Theorem 1 where

Qi =









ZFi + FT
i Z FT

i Y ZGi HT
zi

Y Fi 0 Y Gi 0

GT
i Z GT

i Y −µ JT
zi

Hzi 0 Jzi −µ









, (12)

B =

[

0 I 0 0
Hy 0 Jy 0

]

, C =

[

Y Y 0 0
0 0 0 −I

]

. (13)

If we notice now that all matrices in B are known
such that B⊥ is also a known constant matrix and
that

C⊥ =









0 I
0 −I
I 0
0 0









(14)

is also a constant matrix, even though C depends
on the nonsingular matrix Y . Therefore, as B⊥

and C⊥ are constants, and Qi, i = 1, . . . , N are
affine functions of variables Z and Y , the conclu-
sion is that the inequalities in item i) of Theorem 1
are also affine, hence LMI. The solution of these
LMI along with the linear constraint

Z > 0, Y > 0, Z > Y, (15)

which comes from P > 0, can be used to verify
whether there exists a feasible robust H∞ filter.
This result is equivalent to the one obtained
in (Geromel and de Oliveira, 2001) with the help
of a change of variable.

3. CONJECTURES ON ROBUST
ELIMINATION

An interesting aspect of using Lemma 1 to move
from ii) to i) is that the inequalities in i) are
simpler to solve, having less variables and being
of lower dimension than the one in ii). That
is not necessarily true in Theorem 1, in which
an extra variable had to be introduced. In this
section we will investigate whether there exists
simpler versions of Theorem 1 which preserves
this interesting property of Lemma 1. We start by
multiplying (1) on the right by B⊥

i and on the left
by its transpose and repeating the same procedure
for C⊥

i to produce

B⊥
i

T
QiB

⊥
i < 0, and C⊥

i

T
QiC

⊥
i < 0, (16)

for all i = 1, . . . , N . This shows that (1) im-
plies (16). As we will see next, the converse is
unfortunately not true in general. We show this
by presenting a collection of counter-examples to

some conjectures. The first conjecture we consider
is the following.

Conjecture 1. Let Qi ∈ S
n, i = 1, . . . , N , B ∈

R
m×n, and C ∈ R

p×n be given matrices. The
following statements are equivalent:

i) (B⊥T
QiB

⊥ < 0 or BT B > 0) and

(C⊥T
QiC

⊥ < 0 or CT C > 0),
∀i = 1, . . . , N ,

ii) ∃K ∈ R
p×m : Qi + CT KB + BT KT C < 0,

∀i = 1, . . . , N .

The interested reader can verify that if this par-
ticular version of the elimination lemma is true,
than it is possible to show that some open prob-
lems in control theory such as, for instance, the
design of robust dynamic output feedback con-
trollers for plants with structured polytopic un-
certainty (Geromel et al., 1999; de Oliveira et

al., 2000) can be given an LMI formulation. Unfor-
tunately, we show in Section 4 that this conjecture
is false when N > 1. A possible variation of
Conjecture 1 is the following.

Conjecture 2. Let Q ∈ S
n, Bi ∈ R

m×n, and
Ci ∈ R

p×n, i = 1, . . . , N , be given matrices. The
following statements are equivalent:

i) (B⊥
i

T
QB⊥

i < 0 or BT
i Bi > 0) and

(C⊥
i

T
QC⊥

i < 0 or CT
i Ci > 0),

∀i = 1, . . . , N ,
ii) ∃K ∈ R

p×m : Q + CT
i KBi + BT

i KT Ci < 0,
∀i = 1, . . . , N .

We also show a counter-example in Section 4
that proves this is false. Indeed, we show that all
possible variations of these conjecture that check
exclusively inequalities in the form (16) can not
be correct when N > 1.

Interestingly enough, the particular case of the
above conjectures given in the following lemma
is indeed true.

Lemma 2. Let Qi ∈ S
n, i = 1, . . . , N , and B ∈

R
m×n be given matrices. The following statements

are equivalent:

i) B⊥T
QiB

⊥ < 0, ∀i = 1, . . . , N ,
ii) ∃K ∈ R

n×m : Qi + KB + BT KT < 0,
∀i = 1, . . . , N .

A formal proof is provided in Appendix A.



4. COUNTER-EXAMPLES OF THE ROBUST
ELIMINATION CONJECTURES

The following is a counter-example for Conjec-
ture 1. Consider the matrices

Q1 =

[

−1 4
4 −1

]

, Q2 =

[

−1 −4
−4 −1

]

,

B =
[

1 0
]

, C =
[

0 1
]

.

For these matrices B⊥ = CT , C⊥ = BT and

B⊥T
QiB

⊥ = C⊥T
QiC

⊥ = −1 < 0, ∀i = 1, 2,

which implies that the inequalities in item i) of
Conjecture 1 are feasible. However,

Q1 + CT KB + BT KT C =

[

−1 K + 4
K + 4 −1

]

< 0,

Q2 + CT KB + BT KT C =

[

−1 K − 4
K − 4 −1

]

< 0,

which implies that all values of K that make the
above inequalities feasible are in the set

{|K + 4| < 1} ∩ {|K − 4| < 1} = ∅.

The following is a counter-example for Conjec-
ture 2. For the choice of matrices

Q =

[

−1 4
4 −1

]

,

C1 = C2 = B1 =
[

1 0
]

, B2 =
[

0 1
]

,

we have B⊥
1 = C⊥

1 = C⊥
2 = BT

2 , B⊥
2 = BT

1 and

B⊥
i

T
QB⊥

i = C⊥
i

T
QC⊥

i = −1 < 0, i = 1, 2.

Once more the inequalities in item i) of Conjec-
ture 2 are feasible while

Q + CT
1 KB1 + BT

1 KT C1 =

[

2K − 1 4
4 −1

]

< 0,

Q + CT
2 KB2 + BT

2 KT C2 =

[

−1 K + 4
K + 4 −1

]

< 0,

which implies that all values of K that make the
above inequalities feasible are in the set

{K < −15/2} ∩ {|K + 4| < 1} = ∅.

The above counter-example also rules out the last
possible variation which would be to let Q and B
constant and have distinct Ci for all i = 1, . . . , N
(or C constant and Bi, i = 1, . . . , N). These
counter-examples show that no possible robust
version of the elimination lemma that can be
build by checking exclusively the inequalities in
the form of (16) is correct when formulated for
N > 1 inequalities.

5. DISCUSSION

The most striking difference between the robust
elimination result in Theorem 1 and Lemma 1 is
the need for an extra variable Q0. In fact, this

is related to the fact that we can only establish
a partial ordering for symmetric matrices (see
for instance (Jarre, 2000)). Indeed, consider the
inequalities

Qi < R, Qi < S, ∀i = 1, . . . , N.

There might not exist Q0 such that

Qi < Q0 < R, Qi < Q0 < S, ∀i = 1, . . . , N.

Indeed, using Finsler’s Lemma (see Appendix A)
one can rewrite item i) of Conjecture 1 as

∃α ∈ R
+ : Qi < αBT B and Qi < αCT C,

for all i = 1, . . . , N . Using the same reasoning, the
item i) of Theorem 1 can be rewritten as

∃Q0 ∈ S
n, α ∈ R

+ :

Qi < Q0 < αBT B and Qi < Q0 < αCT C,

for all i = 1, . . . , N , from where it is clear that the
role of Q0 is to ensure the existence of a matrix
situated “between” all the Qi, i = 1, . . . , N and
the matrices αBT B and αCT C. Notice that when
N = 1, if

Q1 < R, Q1 < S,

then there always exists a sufficiently small ε > 0
such that Q0 = Q1 + εI and

Q1 < Q0 < R, Q1 < Q0 < S,

therefore, there is no need to search explicitly for
such Q0.

The same fact is true when considering

Qi < R, ∀i = 1, . . . , N,

for which there always exists a sufficiently small
ε > 0 such that Q0 = R − εI and

Qi < Q0 < R, ∀i = 1, . . . , N.

This explains why there is no need to include the
variable Q0 in the robust result of Lemma 2.

We hope that the results shown in this paper can
provide some insight on the difficulties of solving
some robust control problems and be used in the
future to solve open problems in systems, filtering
and control theory.
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Appendix A. PROOFS OF THE ROBUST
ELIMINATION RESULTS

We need the following well known result (see (Skelton
et al., 1997) for a proof).

Lemma 3. (Finsler). Let Q ∈ S
n, and B ∈ R

m×n

be given matrices with rank(B) < n. The follow-
ing statements are equivalent:

i) B⊥T
QB⊥ < 0,

ii) ∃α ∈ R
+, α < ∞ : Q − αBT B < 0.

A.1 Proof of Lemma 2

ii) ⇒ i) : Multiply the inequality in ii) on the

right by B⊥ and on the left by B⊥T
to obtain the

inequalities in i) for each i = 1, . . . , N .

i) ⇒ ii) : From Lemma 3, if the inequalities given
in item i) of Lemma 2 have a feasible solution then
there exist αi ∈ R

+, αi < ∞, i = 1, . . . , N such
that

Qi − αiB
T B < 0, ∀i = 1, . . . , N.

Therefore, for α ∈ R
+, α := maxi(αi) < ∞,

Qi − αBT B < 0, ∀i = 1, . . . , N.

Hence, defining K := −(1/2)αBT we have that

Qi + KB + BT KT < 0, ∀i = 1, . . . , N.

A.2 Proof of Theorem 1

i) ⇒ ii) : If the inequalities given in item i)
of Theorem 1 have feasible solutions then, from
Lemma 1, there exists K such that

Q0 + CT KB + BT KT C < 0.

But as Q0 ≥ Qi, i = 1, . . . , N , we have that

0 > Q0 + CT KB + BT KT C,

≥ Qi + CT KB + BT KT C,

for all i = 1, . . . , N .

ii) ⇒ i) : If the inequalities in item ii) of Theo-
rem 1 have feasible solutions then there exists a
sufficiently small ε > 0 such that

Qi + CT KB + BT KT C + εI < 0,

for all i = 1, . . . , N . Hence, defining

Q0 := −(CT KB + BT KT C + εI),

⇒ Q0 ≥ Qi, ∀i = 1, . . . , N.

Also notice that

Q0 + CT KB + BT KT C = −εI < 0,

which, using Lemma 1, implies that B⊥T
Q0B

⊥ <

0, and C⊥T
Q0C

⊥ < 0.


