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Abstract: Command signals that can move a flexible system without residual vibration and
also limit the transient deflection are very useful, but difficult to create.  Historically, these
types of commands have been generated via numerical optimization.  A method for
analytically creating deflection-limiting commands is described and evaluated.
Characteristics of the command profile are presented as a function of deflection limit and
move distance.  Experimental results from a large bridge crane demonstrate key results.
The major advantage of this method is that the problem is solvable in closed form, rather
than via numerical optimization. Copyright © 2005 IFAC
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1. INTRODUCTION

An extensive array of control schemes have been
developed to control unwanted vibration in flexible
systems  (Ben-Asher, et al., 1992; Wie, et al., 1993;
Asada et al., 1990; Cannon, and Schmitz, 1984;
Papadopoulos, and Garcia, 1997).  One approach
involves designing a reference command that leads to
low levels of vibration (Bhat, and Miu, 1990; Singer
and Seering, 1990; Liu, and Wie, 1992).  One of the
more successful approaches is to generate a reference
command that drives the system to cancel out its own
vibration. The earliest incarnation of this self-
canceling command generation was developed in the
1950's by O.J.M. Smith (Smith, 1958).  His posicast
control method involved breaking a step of certain
magnitude into two smaller magnitude steps, one of
which is delayed one-half period of vibration.
Unfortunately, his technique was sensitive to
modeling errors (Tallman and Smith, 1958).  In 1990
Singer and Seering developed reference commands
that were robust enough to be effective on a wide
range of systems (Singer and Seering, 1990).  Their
technique is known as input shaping and many useful
extensions have been made to their original
formulation.

Input shaping is implemented by convolving a
sequence of impulses, know as the input shaper, with
a desired system command to produce a shaped input
that is then used to drive the system.  This process is
demonstrated in Figure 1.  The amplitudes and time
locations of the impulses are determined by solving a
set of constraint equations that attempt to control the
dynamic response of the system. The elimination of
the unwanted vibration comes at the expense of the
system’s rise time. The rise time is delayed by the
shaper’s duration, Δ. Therefore, it is always desirable
to create shapers with the shortest duration possible.
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Figure 1: Input Shaping Example.

The constraint on residual vibration amplitude can be
expressed as the ratio of residual vibration amplitude
with shaping to that without shaping.  The percentage
vibration can be determined by using the expression
for residual vibration of a second-order harmonic
oscillator of frequency ω and damping ratio ζ.  The
vibration from a series of impulses is divided by the



vibration from a single impulse to get the percentage
vibration:

     V (ω,ζ ) = e−ζωt n [C(ω ,ζ )]2 +[S(ω,ζ )]2 , (1)
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If V(ω,ζ ) is set equal to zero at the modeling
parameters, (ωm, ζm), then a shaper that satisfies the
equation is called a Zero Vibration (ZV) shaper.  This
is the type of solution proposed by Smith in the
1950’s.

A ZV shaper will not work well on many systems
because it will be sensitive to modeling errors.
Therefore, the constraint equations must ensure
robustness to modeling errors.  Singer and Seering's
robust input shaping was achieved by setting the
derivative with respect to the frequency of the
residual vibration equal to zero. The resulting shaper
is called a Zero Vibration and Derivative (ZVD)
shaper.  The improved robustness can be seen by
plotting sensitivity curves – amplitude of vibration vs.
modeling error, as shown in Figure 2.  The
normalized frequency is on the abscissa while the
percent residual vibration as defined by (1) is on the
ordinate.  Robustness can be quantified by measuring
the insensitivity of the command.  The insensitivity,
I, is defined to be the nondimensional width of the
sensitivity curve that lies below the toleration limit.
(For all cases shown here the vibration tolerance is
set to 5%.)
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Figure 2: Sensitivity Curves.

Many shapers are derived using the constraint of
positive impulse amplitudes to keep the amplitudes
from going to positive and negative infinity. An
alternative constraint requires that the impulses have
unity magnitude. A Unity Magnitude, Zero Vibration
(UM-ZV) shaper has a shorter duration than the
standard ZV shaper.  Figure 3 shows a step command
shaped with a UM-ZV shaper.
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Figure 3: Unity Magnitude, Zero Vibration
Command Shaper.

Solving the input shaping constraint equations often
requires a nonlinear optimization. However, input
shapers can be designed in the digital domain, rather
than the continuous domain, to eliminate the need for
a nonlinear optimization (Murphy and Watanabe,
1992; Magee and Book, 1993; Tuttle and Seering,
1997; Robertson and Singhose, 2001).  This
characteristic of digital shaping is extremely useful.
Eliminating the need for the nonlinear optimization
greatly simplifies the process used to create the
commands.  However, even a linear optimization
may require significant computational effort for some
of the more complicated shaper applications.

In an effort to avoid the need for numerical
optimization, analytic On-Off shaped commands
were developed for rest-to-rest maneuvers (Singhose
et al., 1999). As shown in Figure 4, these commands
consist of a transition from rest to acceleration
(transition 1), a transition from acceleration to
deceleration (transition 2) and finally a transition
from deceleration to rest (transition 3).  These
transitions can be created by using standard input
shaper design techniques, while the time between the
transitions are determined by the constraints on the
rigid-body motion.
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Figure 4: Analytic ON-OFF Commands.

2. DEFLECTION-LIMITING COMMANDS

While these commands successfully eliminated
vibration, they could create large deflections during
the move.  In an effort to reduce internal stresses that
result from these deflections, commands have been
developed that place a limit on the transient
deflection (Singhose, et al., 1997; Robertson, and
Singhose, 2001).

One of the great advantages of input shaping is that it
requires only simple system models like the one
shown in Figure 5.  Simple models can be used
because input shaping can be made robust to
modeling errors.  The robustness allows the
command profiles developed for simple systems to
work effectively on more complex systems.
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Figure 5: Mass-Spring-Mass Model.

The amplitudes and time locations of the impulses in
an input shaper are determined by satisfying a set of
constraint equations while minimizing the maneuver
duration.  Typical constraints are as follows:

1) Residual Vibration Constraints
2) Robustness Constriants
3) Requirement of Time-Optimality
4) Rigid-Body Contraints
5) Constraints on Impulse Amplitude

Solution of the above constraints will lead to
commands that eliminate residual vibration and have
some level of robustness to modeling errors.
However, the deflection of the system during the
slew is not specifically limited.  If the deflection is
large, then the system may be damaged, or the
endpoint may deviate considerably from an intended
trajectory.  In order to control the level of deflection
during the move, an expression for the deflection as a
function of the input shaper must be obtained.  The
desired function can be generated using superposition
of deflections from individual step inputs.  For the
system shown in Figure 5, an expression for the
deflection is given by:
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while,
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where ω is the natural frequency of oscillation
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and the coefficient, Dmax, is given by:

Dmax =
2umaxm2
k(m1 +m2 )

(7)

It is important to note the restriction presented by the
qualifier tm ≤ t < tm+1  in (5). The deflection which
occurs between the first and second impulses of the
input, D1-2(t), (the period during the first pulse) is
given by (4) when m = 1.  The deflection, D2-3(t),
between the second and third impulses is given by (4)
when m = 2.  The deflection, D3-4(t), that occurs
during the second pulse is given by (4) with m = 3,
etc.  Equation 4 amounts to a piecewise-continuous
function composed of n finite length segments; each

of the segments has a limited range of applicability.
Note that the magnitude of deflection caused by a
series of pulses can exceed Dmax if the deflection
components from individual pulses interfere
constructively.

3. ANALYTIC DEFLECTION-LIMITING
COMMANDS

Even in the absence of vibration, a deflection of
magnitude ΣAiDmax/2, will occur when force is being
applied to the system.  For the deflection to be
limited, the following constraints must be met,
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This constraint applies during the times between
transition 1 and 2 and between transition 2 and 3 and
Deflim is the deflection limit.  This can be
acccomplished by modifying the impulse amplitude
constraint to be
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This can be accomplished by modifying a standard
UM-ZV shaper to be of the form shown in Figure 6.
Combining the impulse amplitudes shown in Figure 6
and (9) we can solve for a3:
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The impulse amplitudes set by Figure 6 and (10) can
be inserted into (2) and (3), set equal to zero and
solved for t2 and t3 to yield:
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t2 = cos−1[(0.5* (2 − 2Deflim
Dmax

)2)]/ω (11)

€ 

t3 = cos−1(−Deflim
Dmax

) /ω (12)

Figure 6: Deflection-Limiting Transition Shaper.

The above equations are used to create command
transitions that accelerate the system to its deflection
limit without residual vibration.  The two-unit



transition (transition 2) is created by using a modified
ZV shaper defined by,
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where T is the period of the flexible mode.

With the individual transitions determined by the
flexible dynamics, the times between the transitions
can be determined by looking at move distance
requirements.  Considering only the first half of the
move for an undamped system (the second half can
be found from symmetry), the system must be at the
midpoint of the move halfway through the command,
or

x(tmid ) =
xd
2

(14)

where xd is the desired move distance and tmid is
described by

tmid = t4 +
T
4

(15)

By integrating the rigid-body equation of motion with
respect to time, an expression t4 is obtained:

€ 

t4 =
(−b + b2 − 4ac )
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and α is the force-to-mass ratio.  Now the command
shaper can by described by
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with a3, t2, t3 and t4 defined by (10), (11), (12) and
(16), respectively, and t5, t6, t7 and t8 determined from
symmetry.  These equations show that a3 is
proportional to the deflection limit, while the impulse
time locations are functions of the deflection limit
and the system parameters. Figure 7 shows the
command resulting from this formulation.

Figure 7: Analytic Deflection-Limiting Command.

4. RESULTS

Simulations were conducted on the benchmark
system shown in Figure 5.  All the parameters were
set to unity, yielding a system with a force-to-mass
ratio of 0.5 and a natural frequency of 0.2251 Hz.
Three commands were generated to move the system
5 units.  The first is a vibration-free analytic on-off
command (Singhose et al., 1999).  The other
commands were designed to have a deflection limit
of 0.4, or 80% of the vibration-free deflection
obtained using analytic on-off commands and 0.3, or
60% of the vibration-free deflection obtained using
analytic on-off commands.  Figure 8 shows the input
and deflection response for these commands.  Note
that the first pulse is shortened and the amplitude of
the middle pulses are reduced to limit the deflection
to the pre-specified limit.
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Figure 8: Move distance = 5 units.

The closed-form deflection limiting commands were
verified on a 10-ton bridge crane at Georgia Tech.
An overhead camera was used to record the position
of the payload and the payload’s deflection relative to
the overhead trolley.  Figure 9 shows the position of
the payload for four different input commands.  The
Bang-Bang command has the fastest rise time, but the
crane payload oscillates about the desired position
after the conclusion of the command.  The Fuel-
Efficient command was created using the analytic
On-Off commands presented earlier, while the
deflection-limiting commands were developed to
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reduce the transient deflection to 80% and 60% of the
vibration-free deflection.  Figure 10 shows that the
deflection-limiting commands successfully reduce the
transient deflection as predicted.
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Figure 9: Payload Position.

In traditional input shaping methods, a shaper’s
robustness, or insensitivity, is independent of the
move distance.  However, the insensitivity is
dependent on the move distance for analytic on-off
and deflection-limiting commands.  Figure 11 shows
the 5% Insensitivity as a function of move distance
for an analytic on-off command and analytic
deflection-limiting commands with deflection limits
of 0.4 and 0.3.  The insensitivity varies greatly with
move distance.  This occurs because in the presence
of modeling errors, there will be some residual
vibration at the end of each transition.  There will be
times when the residual vibrations will interfere
destructively, creating an overall command that is
more robust than each individual transition. There
will also be times when the residual vibrations will
interfere constructively, creating an overall command
that is less robust than each individual transition.
Because the times between the transitions are
determined by the rigid-body move distance
constraints, the robustness of the command is a
function of the move distance.

The transient deflection robustness of analytic
commands deflection-limiting commands must be
investigated in addition to the residual vibration.
Deflection-limiting commands are needed because
the transient performance is a critical consideration.
Figure 12 shows the effect modeling errors have on
the maximum deflection during the move.  The
percent the maximum deflection exceeded the
deflection limit of 0.4 is plotted versus the
normalized frequency.  For all the move distances
shown, overestimating the natural frequency (the
model frequency is higher than the actual frequency)
always leads to commands that exceed the deflection
limit.  Underestimation of the natural frequency,
however, has negative effects only in some cases.
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Figure 10: Payload Deflection.
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Figure 11: Robustness as a function of move
distance.
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Figure 12: Transient Robustness Sensitivity.

5. CONCLUSIONS

A closed-form method for calculating deflection-
limiting commands has been developed.  The flexible
mode is used to determine the zero-vibration
transitions, the deflection constraint is used to
determine the amplitudes of the transitions, and the
move distance constraint is used to determine the
times between the transitions.  The robustness of
these commands is dependent on the move distance.
Experimental tests on a large bridge crane verified
the effectiveness of the proposed method.
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