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Henrik Jansson ∗ Håkan Hjalmarsson ∗

∗ KTH, Signals, Sensors and Systems, S-100 44 Stockholm,
Sweden. henrik.jansson@s3.kth.se

Abstract: In this contribution we extend a recently developed framework for open loop
input design to closed loop experiment design. More specifically, for the very common
situation of a fixed controller during the identification experiment, the framework is
extended to the design of an optimal reference signal spectrum and also to cope with
closed loop signal constraints. In a further extension also the regulator is included in the
experiment design leading to a very general experiment design framework.
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1. INTRODUCTION

In system identification, there is a strong relation
between the achieved accuracy of obtained models
and the experiment conditions such as external exci-
tation signals. This fact received considerable inter-
est in the 1970’s, where (Goodwin and Payne, 1977)
and (Zarrop, 1979) are good introductions to optimal
input design in open loop. Typical design problems
in this context correspond to non-convex programs
and, hence, computational aspects have limited the
applicability of optimal input design. One way of
avoiding this has been to rely on high-order expres-
sions for the model accuracy (Ljung, 1985; Yuan and
Ljung, 1985; Gevers and Ljung, 1986; Hjalmarsson
et al., 1996; Forssell and Ljung, 2000), which be-
side computational favors provides a certain robust-
ness against the properties of the underlying system.
Despite that these high-order results can be quite
accurate even for model orders as low as two, see
(Ljung, 1985; Ljung, 1999), it is easy to construct
examples where they fail, for arbitrarily high orders
see (Ninness and Hjalmarsson, 2002). Furthermore,
these results are not suitable for handling frequency
wise constraints, which e.g. is an important ingredient
in many robust control applications.

Motivated by these limitations, there has been re-
newed interest in input design for models of finite
order leading to the contributions (Lindqvist and Hjal-
marsson, 2000; Lindqvist and Hjalmarsson, 2001;
Hildebrand and Gevers, 2003), (Hildebrand and Gev-
ers, 2003), (Bombois et al., 2004b) and (Jansson and

Hjalmarsson, 2004a), in which a new approach to
solve input design problems has been opened up. It
has been shown that a wide range of open loop input
design problems are equivalent to convex programs.
Today, there exist several powerful numerical methods
to solve convex programs.

In the context of control applications, various argu-
ments for the advantages of identification in closed
loop has been brought forward. In (Gevers and Ljung,
1986) it was shown that for situations when the high
order variance expression is valid, closed loop exper-
iments under minimum variance control are optimal
if the model is to be used for minimum variance con-
trol. For similar problem formulations it was shown in
(Hjalmarsson et al., 1996) that it is possible to outper-
form any fixed input design by a sequence of closed
loop designs, provided the experimentation time is
long enough. Again relying on the high-order vari-
ance expression, (Forssell and Ljung, 2000) showed
that, typically, closed loop experiments are optimal
when the output variance is constrained during the
experiments. In another line of research focusing on
the bias error it has also been shown that closed
loop experiments can be beneficial, see e.g. (Zang et
al., 1995; Lee et al., 1993). Closed loop experimen-
tation can also be motivated by practical arguments.
Most industrial processes are being operated in closed
loop and it is often not possible to open the loop.
Therefore, identification experiments often have to be
performed in closed loop with an existing controller in
the loop.



Considering the above, it is of interest to re-examine
optimal closed loop experiment design for finite model
order. In this contribution, we will continue the work
in (Jansson and Hjalmarsson, 2004b; Jansson and
Hjalmarsson, 2004a) and generalize these results to
include feedback in the input. Some early contribu-
tions on experiment design in closed loop are (Ng et
al., 1977b; Ng et al., 1977a; Gustavsson et al., 1977).

A brief review of parameter estimation is given in Sec-
tion 2. Some relevant issues involved in typical design
formulations are illustrated in Section 3. Experiment
design with a fix controller is treated in Section 4.
The case with the feedback mechanism included in the
experiment design is treated in Sections 5-7. The paper
is summarized in Section 8.

2. PARAMETER ESTIMATION

We will consider identification of time-discrete lin-
ear time-invariant systems within the prediction error
framework, (Ljung, 1999). The true single input/single
output system is modelled by

y(t) = G(q, θ)u(t) +H(q, θ)e(t) (1)

where G and H are parametrized by the real valued
parameter vector θ. Furthermore, y is the output and
u is the input and e is zero mean white noise with
variance λ. It is assumed that G and H have the
rational forms

G(q, θ) =
q−nkB(q, θ)
A(q, θ)

, H(q, θ) =
C(q, θ)
D(q, θ)

(2)

where

A(q, θ) = 1 + a1q
−1 + · · · + ana

q−na (3)

B(q, θ) = b0 + b1q
−1 + · · · + bnb

q−nb (4)

C(q, θ) = 1 + c1q
−1 + · · · + cnc

q−nc (5)

D(q, θ) = 1 + d1q
−1 + · · · + dnd

q−nd (6)

with q being the delay operator. We will assume that
there exists a description of the true system within the
model class defined by θ = θo and λ = λo.The one-
step-ahead predictor for the model (1) is

ŷ(t, θ) =H−1(q, θ)G(q, θ)u(t)
+

(
1 −H−1(q, θ)

)
y(t)

(7)

and the prediction error is ε(t, θ) = y(t)− ŷ(t, θ).The
parameters are estimated with the prediction error
method using a least mean square criterion to mini-
mize the prediction error. The parameter estimate is

θ̂N = arg min
θ

1
2N

N∑
t=1

ε2(t, θ) (8)

where N denotes the number of the data that is used
for the estimation. Under mild assumptions the param-
eter estimate has an asymptotic distribution (Ljung,
1999) that obeys
√
N

(
θ̂N − θo

)
∈ AsN(0, P )

P = λo

(
E{ψ(t, θo)ψT (t, θo)}

)−1

ψ(t, θo) = − ∂

∂θ
ε(t, θ)

∣∣∣∣
θ=θo

=
∂

∂θ
ŷ(t|θ)

∣∣∣∣
θ=θo

(9)

Introduce χo(t) = [u(t) eo(t)]
T where eo(t) repre-

sents the true noise source. Using (7) and (9) we obtain

ψ(t, θo) = F(q, θo)χo(t) (10)

where F(q, θo) = [Fu(q, θo) Fe(q, θo)] with

Fu(q, θ) =
1

H(q, θ)
∂G(q, θ)
∂θ

(11)

Fe(q, θ) =
1

H(q, θ)
∂H(q, θ)

∂θ
(12)

In this paper we will assume that the input is generated
as

u(t) = −K(q)y(t) + r(t) (13)

where r(t) is an external reference that is uncorrelated
with the noise e(t). The controller K(q) is assumed
to be linear and causal. Furthermore, all signals are
assumed to have a spectral representation.

Based on (9)-(13), it is possible to express the inverse
of P in (9) as follows

P−1 =
1

2πλo

∫ π

−π

F(θo)Φχo
(θo)F∗(θo)dω (14)

Φχo
=

[
Φu Φue

Φ∗
ue λo

]
(15)

Here Φu is the spectrum of the input and Φue is
the cross spectrum between u and eo. The expression
(14) is very useful for experiment design purposes in
closed loop operation. It shows exactly the influence
of the input spectrum and the cross spectrum on the
asymptotic parameter covariance matrix. This con-
nection between the asymptotic covariance and these
spectra will be further exploited in the subsequent
sections.

3. ISSUES ON OPTIMAL EXPERIMENT DESIGN

If a model has been identified from experimental
data it is inevitable that the model will contain er-
rors. To evaluate the quality of the estimated models
and the possible performance degradations that the
model errors may induce, it is important to quan-
tify them. We will assume that we have a full-order
model structure and hence only variance errors occurs.
Therefore, for large data lengths, the model error can
be characterized by some function of the parameter
covariance P . Some classical quality measures are
the scalar functions det(P ) and TrWP where W is
a weighting matrix. Recently, several frequency by
frequency conditions on the error of the frequency
function estimate have been used in different optimal
input design formulations, see e.g. (Hildebrand and
Gevers, 2003; Bombois et al., 2004a; Jansson and
Hjalmarsson, 2004b). One example is the following
weighted variance criterion

dG∗(ejω, θo)
dθ

P (Φχo
)
dG(ejω, θo)

dθ
≤ b(ω) (16)

where the left hand side is a first order approxima-
tion of the variance of the frequency function estimate
Ĝ(ejω, θ̂N ). The upper bound b(ω) specifies the im-
portant frequency bands wrt the quality of the model.



Experiment design problems are often formulated as
optimization programs that involve non-convex con-
straints, e.g. (16). A framework for handling such
problems has recently been presented in (Jansson
and Hjalmarsson, 2004b) and (Jansson and Hjalmars-
son, 2004a) for design of inputs when the considered
system is in open loop operation. The key to obtain
tractable optimization problems in open loop is to
impose suitable parametrizations of the input spec-
trum. Here we will generalize the results of (Jansson
and Hjalmarsson, 2004b) and (Jansson and Hjalmars-
son, 2004a) and include possible feedback in the in-
put. The main difference between design in open loop
compared to design in closed loop is the parametriza-
tions of signal constraints and the inverse covariance
matrix. Therefore, we will focus on these issues in this
paper. For example, once we have retrieved a linear
and finite parametrization of P−1 it is straightfor-
ward to handle quality constraints as (16) by applying
some of the methods that have been suggested for
input design in open loop, cf. (Jansson and Hjalmars-
son, 2004b).

4. EXPERIMENT DESIGN IN CLOSED LOOP
WITH A FIX CONTROLLER

We will start with the simplest case where the con-
troller is fix but where the spectrum of the reference
signal is at the designer’s disposal. We begin by ob-
serving that Φχo

can be written as

Φχo
=

[
(|So|2Φr + |KSoH(θo)|2λo) Φue

Φ∗
ue λo

]

where So = 1/(1+G(θo)K is the sensitivity function.
We see that Φχo

is affine in the reference spectrum
Φr and consequently, as is evidenced by (14), the
inverse covariance matrix P−1 is affine in the same
quantity. With the input spectrum substituted for the
reference spectrum, this is exactly the basis for the
design techniques for open loop systems, e.g. the ones
presented in (Jansson and Hjalmarsson, 2004b). It is,
hence, straightforward to modify existing open loop
design techniques to handle design of the reference
spectrum when the controller is fix. This means that
we can handle (see (Jansson and Hjalmarsson, 2004b)
for details)

• any energy constraint on the reference spectrum
of the form

1
2π

∫ π

−π

|Wr(ejω)|2Φr(ω)dω (17)

where Wr is a stable transfer function. This in-
cludes e.g. input energy as well as output energy
constraints.

• point-wise constraints

αr(ω) ≤ Φr(ω) ≤ βr(ω) ∀ ω (18)

• general linear, possibly frequency dependent,
functions of the asymptotic covariance matrix P,
e.g. (16). It is also possible to use certain types
of quality constraints that are guaranteed to hold
in a confidence region.

5. EXPERIMENT DESIGN IN CLOSED LOOP
WITH A FREE CONTROLLER

We will now generalize the scenario to the case where,
in addition to the reference spectrum, also the feed-
back mechanismK(q) in (13) can be chosen. We thus
have both Φr and K at our disposal. However, it will
turn out to be more natural to instead use the input
spectrum Φu and the cross spectrum Φue as design
variables. Since there is a one-to-one between these
two sets of variables this imposes no restrictions. This
will be the set-up in the remaining part of the paper.

6. SPECTRUM REPRESENTATIONS

We will briefly discuss some useful options to parametrize
a spectrum. Generally, the spectrum (15) may be writ-
ten

Φχo
=

∞∑
k=−∞

c̃k Bk (19)

for some basis functions {Bk}∞k=−∞ which span L2.
The matrix-valued coefficients c̃k ∈ R

2×2 must be
such that

Φχo
(ω) ≥ 0, ∀ω (20)

For the most common choice of basis functions,
Bk(ejω) = e−jωk, the coefficients c̃k have the in-
terpretation as auto-correlations. Since P−1 is linear
in Φχo

, it is natural to parametrize the spectrum in
terms of the coefficients c̃k. However, it is imprac-
tical to use an infinite number of parameters so the
parametrization has to be restricted. In (Jansson and
Hjalmarsson, 2004a), two different approaches are
presented for this. They are denoted as ”finite di-
mensional spectrum parametrization” and ”partial cor-
relation parametrization”, respectively. Here we will
shortly review these two concepts. For a more thor-
ough treatment we refer to (Jansson and Hjalmars-
son, 2004a).

6.1 Finite dimensional spectrum parametrization

The finite dimensional spectrum parametrization is
based on

Φχo
=

M−1∑
k=−(M−1)

c̃k Bk (21)

for some positive integer M . Here one has to impose
the condition (20) to ensure that Φχo

indeed is a
spectrum. The KYP-lemma may be useful for this
((Jansson and Hjalmarsson, 2004b).

6.2 Partial correlation parametrization

As an alternative to (21), one may use a partial expan-
sion

M−1∑
k=−(M−1)

c̃k Bk (22)

which may not be a spectrum in itself, but constrained
such that there exists additional coefficients c̃k, k =



M,M + 1, . . . such that the expansion (19) satis-
fies the non-negativity condition (20). This approach,
which we denote as “partial correlation parametriza-
tion”, thus enables one to work with infinite dimen-
sional expansions. When using a partial correlation
parametrization one must ensure that there exists an
extension c̃M , c̃M+1, c̃M+2, . . . of the sequence
c̃0, c̃1, . . . , c̃M−1 so that the corresponding basis
function expansion (19) defines a spectrum.

In the next section we will show that both the spectrum
parametrization (21) and the correlation parametriza-
tion (22) can be used to parametrize the inverse co-
variance matrix P−1 and some signal constraints.

7. PARAMETRIZATIONS OF THE COVARIANCE
MATRIX AND SIGNAL CONSTRAINTS

7.1 A parametrization in terms of partial correlations

Since the elements of F span a linear subspace,
it follows that the set of all covariance matrices
can be parametrized in terms of finite dimensional
parametrizations of Φχo

. Here we will character-
ize one such parametrization. This parametrization
is based on an idea originally presented in (Payne
and Goodwin, 1974) with further developments in
(Zarrop, 1979) and (Stoica and Söderström, 1982) for
input design in open loop. Here we will present the
generalization to experiment design in closed loop.

The objective is to obtain a linear and finite parametriza-
tion of P−1 and the weighted output energy defined
by

1
2π

∫ π

−π

|Wy(ejω)|2Φy(ω)dω (23)

whereWy(ejω) is a stable scalar transfer function. The
starting point is the spectrum of the output defined by

Φy(ω) = [G(θo) H(θo)] Φχo

[
G∗(θo)
H∗(θo)

]
(24)

Now introduce the spectrum Φ̃χo
defined by

Φ̃χo

|Wy|2 =
[
G(θo) 0

0 H(θo)

]
Φχo

[
G∗(θo) 0

0 H∗(θo)

]
(25)

Notice that

|Wy|2Φy = [1 1] Φ̃χo

[
1
1

]
(26)

Now let F̃ = [Fu/G, Fe/H] /Wy and parametrize F̃
on the form

F̃(ejω) =
1

FD(ejω)

m∑
k=0

MF (k) e−kjω (27)

where the scalar transfer function FD(ejω) corre-
sponds to the least common denominator to F̃(ejω)
and where MF (k), k = 1, . . . ,m are some real ma-
trices. Then introduce the parametrization

Φ̃χo
(ω) = |FD(ejω)|2

∞∑
k=−∞

Rk e−kjω (28)

i.e. a parametrization of the form (19) with Bk =
|FD(ejω)|2 e−kjω. Now it is straightforward to rewrite
P−1 as a linear function in the auto-correlationsRk as
follows

P−1 =
1

2πλo

∫ π

−π

F̃(θo)Φ̃χo
(θo)F̃∗(θo)dω

=
m∑

k=0

m∑
l=0

1
2πλo

∫ π

−π

MF (k)Φχo
MT

F (l)
FD(ejω)F∗

D(ejω)
e(l−k)jω

=
m∑

k=0

MF (k)R0M
T
F (k)

+
m∑

k=1

m−k∑
l=0

MF (l)RkM
T
F (l + k)

+
m∑

k=1

m−k∑
l=0

MF (l + k)RT
kM

T
F (l) (29)

Remark: Notice that all covariance matrices can be
generated by a finite number of the auto-correlations
Rk. Hence, it is sufficient to work with a partial
correlation parametrization of the spectrum Φχo

.

From (28) it follows that

Rk =
1
2π

∫ π

−π

Φ̃χo

|FD(ejω)|2 ekjω dω (30)

which together with

|FD(ejω)|2 =
m∑

k=−m

fk e−kjω (31)

gives

1
2π

∫ π

−π

Φ̃χo
dω =

m∑
k=−m

fkRk (32)

The output energy (23) is now easily parametrized
using (26) and (32) as

1
2π

∫ π

−π

|Wy(ejω)|2Φy(ω)dω

=
m∑

k=−m

fk [1 1]Rk

[
1
1

] (33)

Notice that (33) is a linear function in Rk.

We have presented a general finite linear parametriza-
tion of P−1, see (29), that parametrizes all achiev-
able covariance matrices. Here, we have considered
a weighted output variance constraint. However, this
type of parametrization can in principle handle all
variance constraints that are linear in Φχo

.

7.2 A parametrization based on a finite spectrum

So far we have considered parametrizations of P−1

based on partial correlation parametrizations of the
spectrum. Here we will introduce a useful and flexible
parametrization based on a finite dimensional spec-
trum parametrization instead. Throughout this section



we will assume that G is stable and minimum phase.
The input spectrum will be parametrized as

Φu(ω) =
Mu∑

k=−Mu

rk Bu
k (ejω) (34)

for some stable basis functions Bu
k that we assume are

such that Bu
−k = (Bu

k )∗. The cross spectrum is defined
by

Φue(ω) = −H(θo) λo

G(θo)
T (θo) (35)

where T is the complementary sensitivity function
defined by T = GK/(1 + GK). Now introduce the
parametrization

Φue(ω) = −H(θo) λo

G(θo)

Mc∑
k=0

sk Bc
k(ejω) (36)

where {Bc
k(ejω)} represents a set of stable basis func-

tions. Notice that the parametrization in (36) corre-
sponds to a linear and finite parametrization of T . For
a sequence {sk}, the controller K is given by

K(q) =
∑Mc

k=0 sk Bc
k(ejω)

G(θo)
(
1 − ∑Mc

k=0 sk Bc
k(ejω)

) (37)

Remark: The controller K in (37) provides an inter-
nally stable closed loop system. Furthermore, integral
action in the controller can be imposed by the con-
straint

∑Mc

k=0 sk Bc
k(1) = 1 .

When the input spectrum and the cross spectrum are
defined by (34) and (36), respectively, the inverse
covariance matrix (14) is given by

P−1(θo) =Ro(θo) +
Mu∑

k=−Mu

rkB
u
P (k)

−
Mc∑
k=0

sk

(
Bc

P (k) + (Bc
P (k))T

) (38)

Notice that (38) is a linear and finite parametrization
in rk and sk. In (38) we have

Ro(θo) =
1
2π

∫ π

−π

Fe(ejω, θo)F∗
e (ejω, θo)dω

Bu
P (k) =
1

2πλo

∫ π

−π

Fu(ejω, θo)Bu
k (ejω)F∗

u(ejω, θo)dω

and

Bc
P (k) =

1
2π

∫ π

−π

Fu(ejω, θo)F∗
e (ejω, θo)

H(ejω, θo)
G(ejω, θo)

Bc
k(ejω)dω

The variance of zy = Wy y, where Wy is a stable lin-
ear filter and y has the spectrum (24), can be expressed
by the linear relation

1
2π

∫ π

−π

|Wy(ejω)|2Φy(ω)dω =
Mu∑

k=−Mu

rkB
u
y (k)

−
Mc∑
k=0

skB
c
y(k) +Rv(θo) (39)

where

Bu
y (k) =

1
2π

∫ π

−π

|Wy(ejω) G(ejω, θo)|2Bk(ejω)dω

Bc
y(k) =

1
2π

∫ π

−π

|Wy(ejω)Φv(ω)[Bc
k(ejω) + (Bc

k)∗(ejω)]dω

and

Rv(θo) =
1
2π

∫ π

−π

|Wy(ejω)|2 Φv(ω)dω

where Φv = |H(θo)|2λo.

In (38), we have presented another finite linear paramet-
rization ofP−1, based on a finite spectrum parametriza-
tion of Φχo

represented by (34) and (36). Due to
the restriction on the spectrum, this parametrization
does in general not parametrize all covariance matri-
ces. There is a trade-off between flexibility and com-
plexity in the choice of Mu and Mc. However, this
class of parametrizations can handle a larger class of
constraints. Beside variance constraints as (39) also
point-wise constraints, see (18), can be treated, which
is not the case for parametrizations based on partial
correlations. Furthermore, as illustrated, it possible to
e.g. impose certain characteristics of the closed loop
and the controller directly in the design stage, see (36)
and (37).

7.3 Numerical Illustration

Here we will use the parametrizations in Section 7.2
on a very simple example. Consider the autoregressive
model

(1 − 1.4q−1 + 0.45q−2)y(t) = u(t− 1) + e(t)
(40)

and consider the experiment design problem

min
Φχo

det P s.t. E y2(t) ≤ 2

which is non-convex. To reformulate this problem we
will use a spectrum parametrization based on (34)
and (36) with Bu

k = Bc
k = e−jkω. This leads to

a linear parametrization of both P−1, see (38), and
the output variance, see (39). The final step to obtain
a tractable optimization problem is to change the
objective function to − log detP that is convex in
P−1. This altogether gives the convex optimization
problem

min
r0,...,rn,s0,...,sm

− log detP (41)

s.t.
n∑

k=−n

rkB
u
y (k) −

m∑
k=0

skB
c
y(k) +Rv(θo) ≤ α

(42)

in the new variables {r0, . . . , rn, s0, . . . , sm}. With
n = 2 and m = 1 we obtain the solution r0 = 5.325,
r1 = −2.66, r2 = 0.45, s0 = 1.4 and s1 = −0.45
which gives detP = 2 · 10−9. This solution corre-
sponds to a feedback loop with a minimum variance
control law and a white noise reference signal. This
is in complete line with a result in (Ng et al., 1977a)



that states that a D-optimal design for AR-systems of
the form (40) with constrained output variance can
indeed be achieved under exactly these conditions. But
this is not the only solution. Another solution can be
represented by a controller with integral action. To
illustrate this we use the possibility to impose integral
action in the controller directly in the design stage.
This can be achieved by the constraint

m∑
k=0

sk Bc
k(1) = 1. (43)

The optimization problem (41) together with the struc-
tural constraint (43) now yields the solution r0 =
5.325, r1 = −2.16, r2 = 0, s0 = 1.9 and s1 = −0.9,
which corresponds to an experiment design withK =
(1.9 − 1.85q−1 + 0.45q−2)/(1 − q−1) and the opti-
mal reference is integrated white noise. Furthermore
the value of the objective function in the optimum is
detP = 2 ·10−9, i.e. the same as for the solution with
the minimum variance controller.

8. SUMMARY

We have extended results on optimal input design in
open loop recently presented in (Jansson and Hjal-
marsson, 2004b; Jansson and Hjalmarsson, 2004a) to
the closed loop setting. When the controller is fix, it
has been shown that it is straightforward to modify
existing open loop design techniques to handle design
of the reference spectrum.

For the case where the feedback mechanism is manip-
ulable, i.e. both the input spectrum Φu and the cross
spectrum Φue are used as design variables, some mod-
ifications of the parametrizations of the inverse co-
variance matrix and signal constraints have to be per-
formed. Here we have shown how to parametrize these
quantities to fit into the previously derived framework.
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