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Abstract: This paper deals with the regulation problem of a class of irrigation
canals using the Saint-Venant partial differential equations (pde). The Internal
Model Boundary Control (IMBC) approach is used and the multireaches case is
considered (several reaches in cascade). Perturbation theory of exponential semi-
group used for control synthesis is extended here to nonhomogeneous hyperbolic
systems, as the multireaches regulation model is described by hyperbolic pde’s.
Experimental results (on the Valence experimental canal) are encouraging for an
extension to the real case. Additionally, a multi-model approach was introduced
to allow wider water level variations. Copyright c©2005 IFAC
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1. INTRODUCTION

Open surface hydraulic systems were studied by
different approaches (Georges, 2002; Malaterre,
2003) in modelling or control. The usual model
is the Saint Venant equations also named shal-
low water equations with regard to the control.
Two approaches are currently used: indirect ap-
proach in finite dimensional (the pde’s are ap-
proximated) and the direct one in infinite dimen-
sion (methods and tools directly relate to pde’s)
(Russel, 2002; Touré, 2002).
This paper is located in the second approach, us-
ing directly partial differential equations for con-
trol synthesis (Pohjolainen, 1982; Sakawa, 1975;
Touré, 1997).
The internal model boundary control is proposed
for control synthesis for one or many reaches reg-
ulation. Internal model boundary control was in-

troduced in (Touré, 1997) for dissipative parabolic
and exponentially stable systems. It is extended
here to the hyperbolic case. The spatial depen-
dency of variables is taken into account. Conser-
vation properties of semigroup stability give the
control synthesis, using some perturbations theory
results (Kato, 1966).
In the first section, the non linear model for a
rectangular canal is given in order to define a
linear regulation model around an equilibrium
state. Regulation problem is then defined for a
canal with reaches in cascade, where hydraulics
constructions are gates or overflows.
The second part deals with the control synthe-
sis. The boundary control model is well posed to
set up the essential properties to be conserved,
due to the structural perturbation of the closed
loop. Associated to the particular structure of



the adapted internal model, the extended system
is represented by a closed operator, generator of
an exponentially stable C0-semigroup. The inter-
nal control law is taken as a multivariable in-
tegral controller or a proportional integral one.
Then, synthesis parameters are obtained by a
direct application of the operators and semigroup
perturbations theory results (Kato, 1966; Pohjo-
lainen, 1982; Touré, 1997).
In the last part, experimental results are given
in multireaches case for water level tracks around
equilibrium states. Moreover, a multi-model ap-
proach is introduced to allow a wider range of real
water level variations.

2. THE CANAL REGULATION PROBLEM: A
BOUNDARY CONTROL SYSTEM

The class of open surface canals is considered.
Considered cases are: one reach followed by an
overflow (Fig. 1, e.g. pth: terminal reach) and
reaches in cascade (Fig. 1 reaches p − 2, p − 1).
Considering a reach, e.g. ith one, the following
notations are used:

• Q(x, t) denotes the water-flow,
• Z(x, t) is the water level in the canal,
• L(i) is the ith reach length , to be controlled

between the upstream x = xup = 0i and the
downstream x = xdo = L(i).

• Ui(t) is the opening of the (i+1)th gate, U0(t)
is the first one.

Fig. 1. Canal scheme: multireaches in cascade

Considering there are p reaches, then let

x ∈ Ω = ∪p
i=1]0i, L(i)[ and ξ =

(

Z
Q

)

∈ X

X =

[

p
∏

i=1

L2(0i, L(i)) × L2(0i, L(i))

]

. (1)

The control problem is the stabilization of the
height and/or the water-flow, around an equilib-
rium behavior for each considered reach.

2.1 Model of Saint-Venant

The reaches are supposed to have a sufficient
length L(i) such that a uniform movement can
be assumed in the lateral direction. The shallow
water’s non linear pde for a rectangular canal can
be written as follows (Georges, 2002; Malaterre,
2003):

∂tZ = −∂x
Q

b
(2)

∂tQ = −∂x(
Q2

bz
+

1

2
gbZ2) + gbZ(I − J) (3)

Z(x, 0) = Z0(x), Q(x, 0) = Q0(x), (4)

where b is the canal width, g the gravity con-
stant, I the bottom slope, J the slope’s rubbing
expressed with the Manning-Strickler expression
and R the hydraulic radius:

J =
n2Q2

(bZ)2R4/3
, R =

bZ

b + 2Z
. (5)

The boundary conditions are stated for each
reach. For all, hydraulic constructions are sup-
posed submerged. Coefficients and functions de-
pend on considered reach and considered hy-
draulic construction. For example, let consider the
ith reach, xup = 0i xdo = L(i), with a upstream
gate. Then upstream boundary equation is given
by:

Q(0i, t) = Ui−1(t)Ψ1(Z(0i, t)). (6)

In the same way, at downstream, when there is a
gate, downstream boundary equation is:

Q(L(i), t) = Ui(t)Ψ3(Z(L(i), t)), (7)

For a terminal reach (pth), generally the hy-
draulics construction is an overflow, so the down-
stream boundary condition is the overflow equa-
tion:

Z(L(p), t) = Ψ2(Q(L(p), t)). (8)

Ψi, 1 ≤ i ≤ 3, are given by:
Ψ1(Z) = Ki−1

√

2g(zup − Z) with Z < zup,

Ψ3(Z) = Ki

√

2g(Z − zdo) with Z > zdo, and

Ψ2(Q) = ( Q2

2gK2
p

)1/3 + hs, with Z > hs,

where zup and zdo are respectively the water
levels before the upstream gate and after the
downstream gate. Ki is the product of gate (or
overflow) width and water-flow coefficient of the
gate. The output to be controlled is the level at
xdo = L(i).

2.2 A regulation model

The regulation problem is the stabilization of the
height and/or the water-flow around an equilib-
rium behavior (ze(x), qe(x)) for each considered



reach. So a linearized model with variable coeffi-
cients can be involved to describe the variations
around this equilibrium behavior.
An equilibrium state of the system checks the
following equations:

∂xze = gbze

I + Je + 4
3Je

1
1+2ze/b

gbze − q2
e/bz2

e

,

∂xqe = 0 (9)

Remark 1. The fluvial case is assumed, i.e.:

ze > 3

√

q2
e/(gb2) = zc. (10)

Note that qe is constant but ze is space dependent.
Considering one equilibrium state for ith reach,
the linearized system around an equilibrium state

is, ξ =
(

Z Q
)t

∈ Xi = L2(0i, L(i)) × L2(0i, L(i)):

∂tξ(t) = (∂tz(t) ∂tq(t))
t

= A1(x)∂xξ(x) + A2(x)ξ(x) (11)

ξ(x, 0) = ξ0(x) (12)

Boundary limits are:

for an upstream gate:

q(0i, t) − ui−1,e∂zΨ1(ze(0i))z(0i, t)

= ui−1(t)Ψ1(ze(0i)) (13)

for a downstream overflow:

z(L(i), t) − ∂qΨ2(qe)q(L(i), t) = 0 (14)

for a downstream gate:

q(L(i), t) − ui,e∂zΨ3(ze(L(i)))z(L(i), t)

= ui(t)Ψ3(ze(L(i))) (15)

where ui−1,e, ui,e are respectively the ith gate up-
stream and downstream equilibrium state open-
ing. ui−1, ui are the opening variations at up-
stream and downstream. Moreover

A1,i(x) =

(

0 −a1,i(x)
−a2,i(x) −a3,i(x)

)

, (16)

A2,i(x) =

(

0 0
a4,i(x) −a5,i(x)

)

, (17)

with a1,i(x) = 1/b, a5,i(x) =
2gbJe,i(x)ze,i(x)

qe,i
,

a2,i(x) = gbze,i(x) −
q2

e,i

bz2

e,i
(x)

, a3,i(x) =
2qe,i

bze,i(x) ,

a4,i(x) = gb(I + Je,i(x) +
4

3
Je,i(x)

1+2ze,i(x)/b).

Let Fi and Gi be the matrical writing of the
boundary conditions (13)-(15).

The linearized system around an equilibrium
state, different for each p reaches, is written as:

∂tξ(t) = Ae(x)∂xξ(x) + Be(x)ξ(x) (18)

ξ(x, 0) = ξ0(x) (19)

F (ξ, ue) = G(u(t)), (20)

where ξ = (z1 q1 z2 q2 . . . zp qp)
t ∈ X (eq. 1), F

and G are the generalization of Fi, Gi, their co-
efficients are adapted according to the hydraulics
construction used on each considered reach.

Operators Ae(x) and Be(x) are the generalization
of operators A1,i(x) (16) and A2,i(x) (17) respec-
tively. Indeed:

Ae = diag(A1,i)1≤i≤p (21)

and Be = diag(A2,i)1≤i≤p, (22)

with x ∈ [0, L(i)], ∀ 1 ≤ i ≤ p and A1,i(x) (16)
is the representative matrix of the state ξi(x) =
(zi(x) qi(x))t of ith reach. The same is done for
Be(x), x ∈ [0, L].
Coefficients aj,i(x), 1 ≤ j ≤ 5 depend on the equi-
librium state ξe,i(x) = (ze,i(x) qe,i)

t, x ∈ [0, L(i)],
∀ 1 ≤ i ≤ p.

The control problem is to find the variations of the
control vector u(t) such that the water levels at
each downstream reach x = xL(i) (i.e. the output
variables) track reference signals ri(t), different
for each reach.
The reference signal ri(t) is chosen, for all cases,
constant or no persistent (a step stable response
of a non oscillatory system).

3. CONTROL SYNTHESIS

The system is first written as a classical boundary
control system. Associated to the internal model
structure, the closed loop system is described as
an open loop perturbation. Control law parame-
ters are tuned such that perturbations preserve
the open loop system properties: closed operator
and semigroup exponentially stable.

3.1 The abstract boundary control system, open

loop system

The linearized boundary control model can be
formulated as follows (xup = 0i and xdo = L(i)
for ith reach):

∂tξ(t) = Ad(x)ξ(t), x ∈ Ω =]0i, L(i)[, t > 0 (23)

Fbξ(t) = Bbu(t), on Γ = ∂Ω, t > 0

ξ(x, 0) = ξ0(x) (24)

where Ad(x) = Ae(x)∂x + Be(x).
Output variable yi is measured at xi = L(i):

yi(t) = Ciξ(t), t ≥ 0, y(t) ∈ Y = R (25)



where Ci is a bounded operator (representation of
the measurement with 1xi±µ(x) = 1[xi−µ,xi+µ](x)
is the function such that equals 1 if
x ∈ [xi − µ, xi + µ], else 0, and µ > 0):

Ciξ =
(

1
2µ

∫ xi+µ

xi−µ
1xi±µ 0

)

ξdx, µ > 0.(26)

Output variable y is measured for all xj = L(j),
1 ≤ j ≤ p, y(t) = Cξ(t) ∈ Y = R

p, t ≥ 0 where
C is a bounded operator (Ci get the type of (26)):

Cξ = (diag(Ci))1≤i≤pξdx, µ > 0.

For n gates, u(t) ∈ R
n, u ∈ Cα([0,∞], U).

The abstract boundary control system is obtained
by change of variables and operators (Fattorini,
1968; Touré, 1997) and the system (23-24) be-
comes:

.
ϕ (t) = Aϕ(t) − D

.
u (t), ϕ(t) ∈ D(A), t > 0

ϕ(0) = ξ(0) − Du(0) (27)

where: ϕ(t) = ξ(t) − Du(t) ∀t ≥ 0.
D is a bounded operator from U → X , such that:

Du ∈ D(Ad) and Fb(Du(t)) = Bbu(t) ∀u(t) ∈ U

and Im(D) ⊂ Ker(Ad)). So D(A) = {ϕ ∈
D(Ad) : Fbϕ = 0} = D(Ad) ∩ Ker(Fb) and
Aϕ = Adϕ, ∀ϕ ∈ D(A) on X .

From a previous work (Dos Santos, 2004), it is
obvious that the open loop system is a well-posed
and exponentially stable system, i.e.:

ϕ(t) = TA(t)ϕ0 −

∫ t

0

TA(t − s)D
.
u (s)ds

with ‖TA(t)‖X < Me−wt, M > 0 w > 0 for all
t ≥ 0, under the fluvial behavior assumption (10).

The control objective can be now achieved by a
simple control law employed in the IMBC control
structure.

3.2 The IMBC structure: closed loop

The Internal Model Boundary Control (IMBC)
structure is a particular case of the classical IMC
structure since it contains an internal feedback on
the model. It allows to get best performances from
closed loop added.
Tracking model Mr and low pass filter model

Mf are stable systems of finite dimension. For
the regulation, a proportional integral feedback
control is chosen for the control law:

u(t) = αiκi

∫

ε(s)ds + αpκpε(t)

= αiκiζ(t) + αpκp

.

ζ (t), (28)

Fig. 2. IMBC structure

with
.

ζ (t) = ε(t).
Moreover, ε(t) = yd(t)−y(t) acts like an integrator
compared to the ”real” measured output, indeed:

ε(t) = r(t) − y(t) − yf(t)

and

lim
t→∞

ε(t) = lim
t→∞

[r(t) − y(t) − (ys(t) − y(t))]

= lim
t→∞

v(t) − ys(t), (29)

as r(t) and e(t) are no persistent, i.e. their limits
exist and are bounded.

Using previous relation, one get:

ζ(t) =

∫

r(s) − y(s)ds

so
.

ζ (t) = r(t) − y(t) = r(t) − Cϕ(t) − CDu(t).

Then, the control law can be written as follows:

u(t) = αiκiζ(t) + αpκp

.

ζ (t)

(I−αpκpCD)u(t) = αiκiζ(t)+αpκpCϕ(t)−αpκpr(t).

So, assuming that (I − αpκpCD) is inversible,
and that W is its left pseudo inverse, such that
W (I − αpκpCD) = I, one get:

u(t) = αiWκiζ(t) + αpWκpCϕ(t) − αpWκpr(t).

Let xa(t) = (ϕ(t) ζ(t))t be the new state space
and κ̃p = αpκp, κ̃i = αiκi then, the extended
IMBC state space system is (from (27)):
{ .

xa (t) = A(α)xa(t) + B(α)r(t) + C(α)
.
r (t)

xa(0) = xa0
(30)

where

A(α) =

(

(I − Dκ̃pC)A 0
(I + CDWκ̃p)C 0

)

+

(

0 −Dκ̃iCDWκ̃i

0 0

)

+

(

−Dκ̃iC(I + DWκ̃pC) 0
0 CDWκ̃i

)

, (31)

B(α) =

(

Dκ̃i(CDWκ̃p + I)
−(CDWκ̃p + I)

)

, C(α) =

(

Dκ̃p

0

)

.

A(α) can be viewed as a bounded perturbation of

A: A(α) = Ae +αiA
(1)
e +α2

i A
(2)
e , where A

(1)
e and

A
(2)
e are bounded operators. Indeed, C, D and CD

are bounded operators.



3.3 Stability results

Now the perturbation theory, from Kato’s works
(Kato, 1966), for control problem of infinite
dimensional system (Pohjolainen, 1982; Pohjo-
lainen, 1985; Touré, 1997) can be used.

Recall the proportional integral control

u(t) = αpκp(r(t) − y(t)) + αiκi

∫

t

(r(s) − y(s))ds.

According to perturbation theory, the system sta-
bility is preserved if the following assumptions are
checked:

∗1 There is a solution to the problem (27) if
and only if rank(CD) = p (Pohjolainen, 1982).
The rank of CD (rank(−CD) = p), is checked
by recurrence, with p = n in the downstream
overflow case and p = n − 1 in the other case
so p ≤ n (Fig. 1).

∗2 (I − αpκpCD) is inversible.

∗3 According to theorem 3.6 of (Pohjolainen,
1982), a suitable selection for κp is: κp = [CD]‡

and the series converges for sufficient small
value of αp, i.e. (‡ is the right pseudo inverse):

0 ≤ αp < (sup
λ∈Γ

a‖R(λ;A)‖ + b‖AR(λ;A)‖)−1

where positive numbers a and b are selected so
that ‖DκpCx‖ ≤ a‖x‖ + b‖Ax‖ for all x ∈ D(A).

∗4 Stability of the series
∑

n αn
i An

e is given by
following conditions with κi = −θ(CD)‡, 1 ≥ θ > 0
(Touré, 1997):







0 ≤ αi < minλ∈Γ(a‖R(λ;Ae)‖ + 1)−1

rg(CDW) = p
Re(σ(CDWκi)) < 0

(32)

Two cases can be studied similarly, the difference
is that in first case the operator CD is inversible
(κp = [CD]−1), in the second it has a right
pseudo inverse (CD is a (n + 1) × n matrix,
κp = [CD]‡). The former is the multireaches case
with a downstream overflow, the latter one is the
multireaches case with only gates.
It is supposed that κi = −θ[CD]‡, 0 < θ < 1, and
αi checks the first condition of (32).
Results are similar in both cases.

Multireaches with a terminal overflow is the
easier case. There are n reaches and p = n gates.
So matrix CD is a n × n inversible matrix with
rank n. Moreover, κp is chosen to verify condition
2, i.e. κp = [CD]−1. The coefficient αp is chosen
in order to check conditions 1, 2 and 3. Let k
such that W is written as W = k(I + αpκpCD),

with k = 1/(1 − α2
p). The checking of the three

conditions leads to:

0 ≤ αp < (sup
λ∈Γ

a‖R(λ; A)‖)−1 (33)

with a = ‖DκpC‖. Note that DκpC : X → X.

4. EXPERIMENTAL RESULTS

Simulations were performed with Matlab and
Simulink. They gave satisfactory results for a sin-
gle reach (cf. (Dos Santos, 2003)) and for the
multireaches case, too. Then, the proposed control
law was implemented on the Valence (France)
experimental canal. This pilote canal is an experi-
mental process (length=8 m, width=0.1 m) with a
rectangular basis, a variable slope and with three
gates (three reaches and an overflow). Rubbing
are weak and the fluvial hypothesis (10) is realized
thanks to the variable slope.

4.1 Experimentations around an equilibrium state

Two reaches with three gates case is presented.
Initial conditions of the both equilibrium states
are the following: Qe = 1(dm3.s−1)

ze1(0) = 1.21(dm), ze2(0) = 1.01(dm).

Reference signals are described bellow for both
reaches (Fig. 3):

r1,0 = 1.28(dm) r2,0 = 1.17(dm)

and

0 ≤ t < 80(s): r1(t) = r1,0,
first 80 ≤ t < 330(s): r1(t) = 120% ∗ r1,0

reach 330 ≤ t < 470(s): r1(t) = 90% ∗ r1,0

t ≥ 470(s): r1(t) = 110% ∗ r1,0

second 0 ≤ t < 160(s): r2(t) = r2,0

reach 160 ≤ t < 320(s): r2(t) = 70% ∗ r2,0

t ≥ 320(s): r2(t) = 83% ∗ r2,0

System oscillations are explained by the ratio be-
tween abscissas and ordinates. It only reproduces
the wave phenomena and not instability.
All the experimental results show the suitability of
this approach. Indeed, given an interval of ±20%
around a given equilibrium state, results are still
very satisfactory. However, if the variation asked
is superior to ±20%, the error between model and
system increases dramatically.

4.2 Multi-model experimentation

Multi-model solution is proposed to solve this
problem: different models are chosen to cover all
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Fig. 3. Downstream levels in two reaches (dm) and
opening of the three gates (mm)

water level variation domain, contained between
zdo to zup (cf. Figure 1). Then, during the control
process, the model of each considered reach used
by the IMBC structure depends on the real water
level, all along the process. E.g. in Figure 4,
considering the domain [zdo, zup] with a variation
of ±20%, three models were chosen. Other models
should have been add to get even more precision,
but one can observe that it is not useful. In the
upper figure, the behavior is very satisfactory
and the transitions between two models are very
smooth, even if it goes through model 3 to model
1 (e.g. at time t = 110(s)). In the lower figure, the
oscillations are about 1(cm) i.e. an error < 10%.
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Fig. 4. Downstream levels (dm), varying between
0.5-2 (dm)

5. CONCLUSION

Internal Model Boundary Control seems to be
suitable for the regulation of canal irrigation prob-
lems addressed in this paper. Moreover, the fact
that the spatial evolution of the model parameters
has been taken into account allows to consider
canals in real situation. It also allows to use the
multi-model approach more easily in order to take
into account multi-level behavior control and mul-
tireaches control.
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