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Abstract: This work presents a family of polynomial ¯lters for discrete-time nonlinear
stochastic systems. These ¯lters can be considered the polynomial version of the well
known Extended Kalman Filter. The standard EKF consists in the optimal linear ¯lter
applied to the linear approximation of systems. The ¯lters presented in this paper are
polynomial ¯lters applied to polynomial approximations of nonlinear systems, and
therefore each of them is characterized by a pair of integers: the degree of the system
approximation and the degree of the ¯lter. The ¯rst ¯lter of the family, the one of
order (1,1), coincides with the EKF in the standard form. The implementation of the
proposed ¯lters does not require the complete knowledge of the noise distributions, but
only the moments up to suitable orders. Numerical simulations show the performances
of the ¯lters for some values of the degrees. Copyright c° 2005 IFAC
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1. INTRODUCTION

This paper consider the ¯ltering problem for non-
linear stochastic systems of the form

x(k + 1) = f
¡
x(k); u(k)

¢
+ v(k);

y(k) = h
¡
x(k); u(k)

¢
+ w(k);

x(0) = x0; (1)

where x(k) 2 IRn is the system state, y(k) 2 IRq
is the measured output, f : IRp £ IRn 7! IRn and
h : IRp £ IRn 7! IRq are smooth nonlinear maps.
v(k) and w(k), the state and output noises, are
independent white sequences, independent of the
initial state x0.

It is well known that the minimum variance esti-
mate of the state requires the computation of the
conditional density, a di±cult in¯nite-dimensional
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problem in the general case (Bucy, 1970; Andrade
Netto et al., 1978). Approximate ¯lters can be con-
structed by computing ¯nite dimensional approx-
imations of the conditional density, e.g. through
Gaussian sum approximations (Alspace and Soren-
sons, 1972; Ito and Xiong, 2000), or through point-
mass distributions as in particle ¯lters (Arulam-
palam et al., 2002). An alternative approach con-
sists in ¯nding an approximation of the stochas-
tic system for which known ¯ltering procedures
are available. In this framework, the Extended
Kalman Filter (EKF) is the most widely used al-
gorithm (Anderson, 1979; Gelb, 1984; Jazwinski,
1970). Improved versions of the EKF are the
iterated EKF and the second order EKF (Gelb,
1984; Jazwinski, 1970). An e®ective modi¯cation
of the EKF is the Unscented Kalman Filter (UKF)
(Julier and Uhlmann, 2004), that uses the so-called
unscented transform for the state and output pre-
diction steps in the EKF equations.

The family of ¯lters here proposed extends the idea



of the EKF using polynomial techniques, both for
the system approximation and the degree of the
¯lter, and therefore will be denoted PEKF (Poly-
nomial EKF) throughout the paper. Each ¯lter
in the family is characterized by a pair of integers
(¹s, ¹o): ¹s is the degree of the polynomial ap-
proximation of the nonlinear systems while ¹o is
the degree of the polynomial ¯lter (Carravetta, et
al., 1996; Carravetta, et al., 1997). The procedure
for the construction of the approximated system
depends on both the indexes (¹s, ¹o) and is sim-
ilar to the Carleman approximation method (Sas-
try, 1999; Kowalski et al., 1991). When ¹o = 1 the
result coincides with the standard Carleman ap-
proximation of order ¹s. The construction of the
PEKF's is based on the approximated system. The
classical EKF is just the ¯lter with ¹s = ¹o = 1.
Preliminary results on the PEKF have been pre-
sented in (Germani et al., 2003), where only the
simpler case ¹o = ¹s has been considered.

The paper is organized as follows: section two
presents the Carleman-like approximation for the
system (1) required for the ¯lter construction; in
section three the polynomial ¯lter is derived; sec-
tion four shows numerical comparison of the per-
formances of some ¯lters in the family. Conclusion
follows.

2. CARLEMAN-LIKE APPROXIMATION

According to the approach of Carravetta et
al.(1997), the construction of a polynomial ¯lter
of a chosen degree ¹o requires the de¯nition of a
polynomial extended system that produces as out-
put the Kronecker powers of the original system up
to the order ¹o. The extension of this method to
nonlinear systems can be made through the suit-
able de¯nition of a bilinear system that approxi-
mates the original one and produces the required
polynomial output. The degree of approximation,
indicated with ¹s, can be chosen independently of
¹o. The construction of the approximated system,
in a suitable neighborhood of a point ~x, is based on
the approximation of the maps f and h by means
of the Taylor polynomials of degree ¹s:

f¹s(x; ~x; u) =

¹sX
i=0

F1;i(~x; u)
¡
x¡ ~x¢[i]

h¹s(x; ~x; u) =

¹sX
i=0

H1;i(~x; u)
¡
x¡ ~x¢[i] (2)

F1;i(x; u) =
1

i!
r[i]x − f; H1;i(x; u) =

1

i!
r[i]x − h:

(3)

The operator r[i]x − applied to a function Ã =
Ã(x; u) : IRn £ IRp 7! IRr is de¯ned as

r[0]x − Ã = Ã;
r[i+1]x − Ã = rx −r[i]x − Ã; i ¸ 1;

(4)

with rx = [@=@x1 ¢ ¢ ¢ @=@xn]. Note that rx − Ã
is the standard Jacobian of the vector function Ã.

Let ¹ = (¹s; ¹o) and ¹¹ = max(¹s; ¹o). For the
construction of the approximating system the fol-
lowing moments must exist and be known

IE
©
x
[i]
0

ª
= ³0i <1;

IE
©
v[s](k)

ª
= »vs <1;

IE
©
w[m](k)

ª
= »wm <1;

s = 1; : : : ; 2¹¹;

m = 1; : : : ; 2¹o:
(5)

The sequences of the Kronecker powers of the
state and output considered for the approxima-
tion are x[s](k) for s = 1; : : : ; ¹¹ and y[m](k) for
m = 1; : : : ; ¹o. The update equations

x[s](k + 1)=
³
f
¡
x(k); u(k)

¢
+ v(k)

´[s]
;

y[m](k) =
³
h
¡
x(k); u(k)

¢
+ w(k)

´[m]
;

(6)

are approximated, in a neighborhood of ~x, as

x[s](k + 1)¼
h³
f¹s
¡
x(k); ~x; u(k)

¢
+ v(k)

´[s]i
¹¹

y[m](k)¼
h³
h¹s
¡
x(k); ~x; u(k)

¢
+ w(k)

´[m]i
¹¹

(7)

where the subscript ¹¹ denotes the truncation of
polynomials of x(k)¡ ~x to the degree ¹¹. The trun-
cated polynomials can be written as follows

h¡
f¹s(x; ~x; u)+v

¢[s]i
¹¹
=

(s¢¹s)^¹¹X
i=0

F¹s;i(~x; u; v)
¡
x¡ ~x¢[i]

h¡
h¹s(x; ~x; u)+w

¢[m]i
¹
=

(m¢¹s)^¹¹X
i=0

H¹
m;i(~x; u;w)

¡
x¡ ~x¢[i]

(8)
where the matrix coe±cients F¹s;i(~x; u; v) and
H¹
m;i(~x; u;w) are polynomials of v and w of degree

s and m, respectively, of the form:

F¹s;i(~x; u; v) =
sX
j=0

eF¹s;i;j(~x; u)³Ini − v[j ]́ ; (9)

H¹
m;i(~x; u;w) =

mX
j=0

eH¹
m;i;j(~x; u)

³
Ini − w[j ]́ ; (10)

with suitable de¯nitions of the matrix coe±cientseF¹s;i;j(~x; u) and eH¹
m;i;j(~x; u) (see Appendix). Ex-

panding in equations (8) the powers of the binomi-
als (x ¡ ~x), as shown in the Appendix, and rear-
ranging the terms gives the structureh¡

f¹s + v
¢[s]i

¹¹
=

(s¢¹s)^¹¹X
i=1

Ã
sX
j=0

eA¹s;i;j(~x; u)³Ini − v[j ]́
!
x[i]



+

(s¢¹s)^¹¹X
i=0

Ã
sX
j=0

eB¹s;i;j(~x; u)³Ini − v[j]́
!
~x[i]; (11)h¡

h¹s + w
¢[m]i

¹¹
=

(m¢¹s)^¹¹X
i=1

Ã
mX
j=0

eC¹m;i;j(~x; u)³Ini − w[j]́
!
x[i]

+

(m¢¹s)^¹¹X
i=0

Ã
mX
j=0

eD¹
m;i;j(~x; u)

³
Ini − w[j ]́

!
~x[i]:(12)

(The expressions for the matrices eA¹s;i;j(~x; u),eB¹s;i;j(~x; u), eC¹s;i;j(~x; u) and eD¹
s;i;j(~x; u) are not re-

ported here because of their typographical length.)
Obviously, using (11) and (12) instead of the exact
update equations does not produce the exact se-
quences x[s](k) and y[m](k). Operating the formal
substitution of x[s](k) with X¹

s (k) and of y
[m](k)

with Y ¹m(k) in the equations (7), and de¯ning the
stochastic sequences V j(k) = Ini − v[j](k) and
W j(k) = Ini −w[j](k), the following update equa-
tions are obtained

X¹
s (k + 1)=

(s¢¹s)^¹¹X
i=1

³ sX
j=0

eA¹s;i;j(~x; u(k))V j(k)´X¹
i (k)

+

(s¢¹s)^¹¹X
i=0

³ sX
j=0

eB¹s;i;j(~x; u(k))V j(k)´~x[i]; (13)

Y ¹m(k)=

(m¢¹s)^¹¹X
i=1

³ mX
j=0

eC¹m;i;j(~x; u(k))W j(k)
´
X¹
i (k)

+

(m¢¹s)^¹¹X
i=0

³ mX
j=0

eD¹
m;i;j(~x; u(k))W

j(k)
´
~x[i]: (14)

The initial states are X¹
s (0) = x

[s]
0 . As usual, s =

1; : : : ; ¹¹ and m = 1; : : : ; ¹o. De¯ning the white
sequences

V jc (k) = Ini −
¡
v[j](k)¡ »vj

¢
W j
c (k) = Ini −

¡
w[j](k)¡ »wj

¢ (15)

the equations (13) and (14) can be put in the form

X¹
s (k + 1)=

(s¢¹s)^¹¹X
i=1

A¹s;iX
¹
i (k) + u

¹
s + v

¹
s ;

Y ¹m(k)=

(m¢¹s)^¹¹X
i=1

C¹m;iX
¹
i (k) + °

¹
m + w

¹
m;

(16)

where

A¹s;i(k; ~x) =
sX
j=0

eA¹s;i;j(~x; u(k))¡Ini − »vj ¢; (17)

u¹s (k; ~x) =

(s¢¹s)^¹¹X
i=0

³ sX
j=0

eB¹s;i;j(~x; u(k))¡Ini − »vj ¢´~x[i];

v¹s (k; ~x) =

(s¢¹s)^¹¹X
i=1

³ sX
j=0

eA¹s;i;j(~x; u(k))V jc (k)´X¹
i (k)

+

(s¢¹s)^¹¹X
i=0

³ sX
j=0

eB¹s;i;j(~x; u(k))V jc (k)´~x[i]
and

C¹m;i(k; ~x) =
mX
j=0

eC¹m;i;j(~x; u(k))¡Ini − »wj ¢; (18)

°¹m(k; ~x) =

(m¢¹s)^¹¹X
i=0

³ mX
j=0

eD¹
m;i;j(~x; u(k))

¡
Ini − »wj

¢´
~x[i];

w¹m(k; ~x) =

(m¢¹s)^¹¹X
i=1

³ mX
j=0

eC¹m;i;j(~x; u(k))W j
c (k)

´
X¹
i (k)

+

(m¢¹s)^¹¹X
i=0

³ mX
j=0

eD¹
m;i;j(~x; u(k))W

j
c (k)

´
~x[i]

Note that A¹s;i(k; ~x), u¹s (k; ~x), C¹m;i(k; ~x) and
°¹m(k; ~x) are deterministic sequences of matrices
and vectors, while v¹s (k; ~x) and w

¹
m(k; ~x) are zero-

mean stochastic sequences.

The equations (16) of the Carleman-like approx-
imation of system (1) with polynomial extended
output can be put in the following compact form

X¹(k + 1) =A¹(k; ~x)X¹(k) + U¹(k; ~x)+V ¹(k; ~x);
Y ¹(k) =C¹(k; ~x)X¹(k) + ¡¹(k; ~x)+W¹(k; ~x);

(19)
where

X¹(k)=

264X
¹
1 (k)
...

X¹
¹¹ (k)

3752 IRn¹¹; Y ¹(k)=
264 Y

¹
1 (k)
...

Y ¹¹o(k)

3752 IRq¹o;
n¹¹ = n+ n

2 + ¢ ¢ ¢+ n¹¹; q¹o = q + q2 + ¢ ¢ ¢+ q¹o ;
(20)

A¹ =

264A
¹
1;1 ¢ ¢ ¢ A¹1;¹¹
...

. . .
...

A¹¹¹;1 ¢ ¢ ¢ A¹¹¹;¹¹

375 ; U¹ =

264u
¹
1
...
u¹¹¹

375 ; (21)

C¹ =

264 C
¹
1;1 ¢ ¢ ¢ C¹1;¹¹
...

. . .
...

C¹¹o;1 ¢ ¢ ¢ C¹¹o;¹¹

375; ¡¹ =
264 °

¹
1
...
°¹¹o

375; (22)

V ¹ =

264 v
¹
1
...
v¹¹¹

375 ; W¹ =

264 w
¹
1
...
w¹¹o

375 ; (23)

The model (19) is a bilinear system with respect
to the white sequences (15) (see the de¯nitions of
the components of V ¹

¡
k; ~x

¢
and W¹

¡
k; ~x

¢
, eq.'s

(17) and (18)). Exploiting the same arguments
used in (Germani et al., 1996 and 1997) it is not
di±cult, though tedious, to prove that V ¹

¡
k; ~x

¢
and W¹

¡
k; ~x

¢
are uncorrelated sequences of zero



mean uncorrelated random vectors. Moreover, the
assumptions (5) ensure that all random vectors
in (19) have ¯nite means and covariances. The
state and output components of the system (19)
are aimed to approximate the Kronecker powers of
the state and output of the original system (1), i.e.
X¹
s (k) ¼ x[s](k) and Y ¹m(k) ¼ y[m](k).

3. A FAMILY OF POLYNOMIAL FILTERS

This section shows how the approximate system
(19) is used for the ¯lter construction: the optimal
linear ¯lter for (19) (linear w.r.t. the polynomial
extended output Y ¹(k)), provides the ¹o-degree
polynomial ¯lter (polynomial w.r.t. the original
output y(k)) for the ¹s-degree approximation of
the original system. Since the extended noises
V ¹
¡
k; ~x

¢
and W¹

¡
k; ~x

¢
in eq.'s (19) are uncor-

related sequences of uncorrelated zero-mean vec-
tors, as discussed in the previous section, the op-
timal linear ¯lter is implemented by the standard
Kalman ¯lter equations. As in the standard EKF,
the system matrices and the covariances needed in
the Riccati equations are not evaluated at a ¯xed ~x
but are computed at each step at the current state
estimate and prediction. In particular, the state
estimate is used instead of ~x for the computation
of matrices A¹, U¹ and ªV ¹

, while the state pre-
diction is used for the computation of matrices C¹,
¡¹ and ªW

¹

. Note that the estimate x̂(k) and pre-
diction x̂(k+1jk) of the original state are computed
as

x̂(k) = [In On£(n¹¹¡n)] bX¹(k);

x̂(k + 1jk) = [In On£(n¹¹¡n)] bX¹(k + 1jk):
(24)

The steps of the polynomial ¯ltering algorithm are
summarized below:

POLYNOMIAL FILTER P¹s;¹o
FOR NONLINEAR SYSTEMS

I) Filter initialization: k = ¡1

bX¹(0j ¡ 1) = IE©X¹(0)
ª
; PP (0) = Cov

¡
X¹(0)

¢
II) computation of the matrices of the output
equation of system (19) at x̂(k + 1jk)

C¹(k + 1) = C¹¡k + 1; x̂(k + 1jk)¢;
¡
¹
(k + 1) = ¡¹

¡
k + 1; x̂(k + 1jk)¢;

ª
W¹

(k + 1) = ªW
¹¡
k + 1; x̂(k + 1jk)¢; (25)

III) computation of the prediction of the extended
output:

bY ¹(k + 1jk) = C¹¡k + 1¢ bX¹(k + 1jk) + ¡¹(k + 1);
(26)

IV) computation of the Kalman gain:

K(k + 1) = PP (k + 1)C¹(k + 1)T

¢
³
C¹(k + 1)PP (k + 1)C¹(k + 1)T +ªW

¹

(k + 1)
´y

(27)
V) computation of the error covariance matrix:

P (k + 1) =
³
In¹¹ ¡K(k + 1)C

¹
(k + 1)

´
PP (k + 1);

(28)
VI) computation of the extended state estimatebX¹(k+1) and of the estimate x̂(k+1) of the orig-
inal state:

bX¹(k + 1) = bX¹(k + 1jk) +K(k + 1)
¢
³
Y ¹(k + 1)¡ bY ¹(k + 1jk)´;

x̂(k + 1) = [In On£(n¹¹¡n)] bX¹(k + 1);

(29)

VII) increment of the counter: k = k + 1;

VIII) computation of the matrices of the state
equation of system (19) at x̂(k):

A¹(k) = A¹¡k; x̂(k)¢;
U¹(k) = U¹¡k; x̂(k)¢;
ª
V ¹

(k) = ªV
¹¡
k; x̂(k)

¢
;

(30)

IX) computation of the extended state predic-
tion:

bX¹(k + 1jk) = A¹(k) bX¹(k) + U¹(k); (31)

X) computation of the one-step prediction error
covariance matrix:

PP (k + 1) = A¹(k)P (k)A¹(k)T +ªV
¹

(k); (32)

XI) GOTO STEP II.

4. SIMULATION RESULTS

This section reports some simulation results that
show the improvement of the state estimate when
the degree ¹o of the polynomial ¯lter P¹s;¹o is in-
creased while the approximation degree ¹s remains
¯xed. The nonlinear system considered is

x1(k + 1) =
¡
0:8 + x2(k)

¢
x1(k) + 0:1 + 0:01v1(k);

x2(k + 1) =
¡
1:5¡ x1(k)

¢
x2(k) + 0:1 + 0:01v2(k);

y(k) = x2(k) + 0:04w(k):
(33)

The noise sequences v1(k), v2(k), w(k) obey the
following discrete distributions:

Pv1(¡1) = 0:6;
Pv1(0) = 0:2;
Pv1(3) = 0:2;

Pv2(¡1) = 0:8;
Pv2(4) = 0:2;

Pw(¡7) = 0:3;
Pw(3) = 0:7:

(34)



The ¯lters P2;1, P2;2 and P2;3 of the family of
PEKF's have been implemented and compared
(the degree of the polynomial ¯lter is increased
(¹o = 1; 2; 3) while the approximation degree is
kept constant (¹s = 2)). For comparison, also the
EKF, the 2nd order EKF (Gelb, 1984) and the
UKF (Julier and Uhlmann, 2004) have been imple-
mented. However, in this example all these ¯lters
gave similar estimates, and therefore only the re-
sults obtained using the 2nd order EKF have been
reported. The sample error variances computed in
a typical simulation over a 1.000 points horizon,
are reported in table 1.

Table 1. Steady state error variances

P2;1 P2;2 P2;3

¾2~x1 2:410 ¢ 10¡3 2:112 ¢ 10¡3 9:690 ¢ 10¡4
¾2~x2 4:229 ¢ 10¡4 3:310 ¢ 10¡4 5:320 ¢ 10¡6

The error variances obtained with the 2nd order
EKF are ¾2~x1 = 2:409 ¢10¡3 and ¾2~x2 = 4:228 ¢10¡4,
very similar to those obtained with the ¯lter P2;1.
The P2;2 achieves a 12% and 22% reduction of the
error variances, w.r.t. the ¯lter P2;1, while the ¯l-
ter P2;3 provides error variances with 60% and 98%
reduction. Figures 1 reports the true states and
their estimates (for the clarity of the representa-
tion, only a window of 50 time steps is plotted).

Fig. 1. True and estimated states x1(k) and x2(k).

5. CONCLUSION

The application of the polynomial approach for
solving the ¯ltering problem of nonlinear stochas-
tic systems has been investigated in this work, and
a family of polynomial ¯lters is presented. Each ¯l-
ter in the family is identi¯ed by a pair of integers
(¹s; ¹o): the ¯rst is the degree of the approximated
system used for the ¯lter construction; the second
is the degree of the polynomial ¯lter. The two in-
dexes can be independently chosen. The ¯lter with
¹s = ¹o = 1 coincides with the Extended Kalman
Filter in the standard form. Numerical simulations
have shown the improvement of the estimate using
¯lters of increasing degree. In particular, a signif-
icant reduction of the estimation error variance is
achieved by increasing the index ¹o.

APPENDIX

This appendix reports some formulas useful for
the computation of matrices and vectors involved
in the construction of the approximating system
(19) and in the ¯lter equations. A very important
formula is the expansion of the Kronecker pow-
ers of summations of vectors. For the purposes
of this paper, it is useful to consider a multiindex

t = ft0; t1; ¢ ¢ ¢ tºg 2
¡
Z+
¢º+1

. The modulus of a
multiindex, denoted jtj, is the sum of its entries,
i.e. jtj = t0+ ¢ ¢ ¢+ tº . The i-th Kronecker power of
a sum of º +1 vectors zi 2 IRp, i = 0; 1; : : : ; º, can
be expressed as

(z0+:::+zº)
[i] =

X
jtj=i

Mp
t

³
z
[t0]
0 −¢ ¢ ¢−z[tº ]º

´
; (A.1)

with a suitable de¯nition of matricesMp
t 2 IRp

i£pi

(see (Carravetta et al., 1997) for the case º =
1). Whenever required, we will refer to Mp

t as
Mp
t0;¢¢¢;tº . Note that it is M

1
k;n¡k =

¡
n
k

¢
.

Equation (A.1) can be put in the compact form

Ã
ºX
h=0

zh

![i]
=
X
jtj=i

Mp
t −

ºY
h=0

z
[th]
h : (A.2)

A repeated use of the following property

(A ¢ C)− (B ¢D) = (A−B) ¢ (C −D) (A:3)

allows to work out the identity

Ã
ºX
h=0

Ahzh

![i]
=
X
jtj=i

Mp
t

³
−
ºY
h=0

A
[th]
h

´³
−
ºY
h=0

z
[th]
h

´
:

(A.4)
Consider now the Taylor approximation of degree
¹s of f(x; u) given by the ¯rst of (2). By using



some properties of Kronecker product and the mul-

tiindex r = fr0; : : : ; r¹s+1g 2
¡
Z+
¢¹s+2 the follow-

ing passages can be made³
f¹s(x; ~x; u) + v

´[s]
=
X
jrj=s

Mn
r

¢
Ã³

−
¹sY
i=0

F
[ri]
1;i (~x; u) −

¹sY
i=0

(x¡ ~x)[iri]
´
− v[r¹s+1]

!
;

=
X
jrj=s

Mn
r

³³
F
¹s
r (~x; u)(x¡ ~x)[®(r)]

´
− v[r¹+1]

´
=
X
jrj=s

Mn
r

³
F
¹s
r (~x; u)− Inr¹s+1

´
(A.5)

¢
³
In®(r) − v[r¹s+1]

´
(x¡ ~x)[®(r)]

where the function ®(r) and the matrix F
¹s
r (~x; u)

are de¯ned as follows

®(r) =

¹sX
i=1

iri; F
¹s
r (~x; u) = −

¹sY
i=0

F
[ri]
1;i (~x; u):

(A.6)
The truncation of the polynomial (A.5) to the de-
gree ¹¹ is obtained through the de¯nition of the

following subset of
¡
Z+
¢¹s+2

S ¹¹s;i =
©
r 2 ¡Z+¢¹s+2 : jrj = s; ®(r) = iª; (A.7)

(note that if jrj = s then ®(r) · s¹s). Thus
h¡
f¹s(x; ~x; u)+v

¢[s]i
¹¹
=

(s¹s)^¹¹X
i=0

F¹s;i(~x; u; v)(x¡~x)[i]

(A.8)
with F¹s;i(~x; u; v) =X
r2S ¹¹

s;i

Mn
r

³
F
¹s
r (~x; u)− Inr¹s+1

´³
Ini − v[r¹s+1 ]́

(A:9)
polynomials of degree s of v. Finally, de¯ning the
set eS ¹¹s;i;j = ©r 2 S ¹¹s;i; r¹s+1 = jª (A:10)

the expressions (8) are obtained with

eF¹s;i;j(~x; u) = X
r2eS ¹¹

s;i;j

Mn
r

³
F
¹s
r (~x; u)− Inj

´
:

(A.11)
Similar computations lead to the expressions (8),
(10) with

eH¹
m;i;j(~x; u) =

X
r2eS ¹¹

m;i;j

Mq
r

³
H
¹s
r (~x; u)− Iqj

´
:

(A.12)
From (8) the equations (11), (12) can be obtained
expanding the Kronecker powers of the binomials
x¡ ~x using the following formula

(x¡ ~x)[i] =
X

t0+t1=i

Mn
t

¡
x[t0] − (¡~x)[t1]¢: (A:13)

and rearranging the terms.

The covariances ªV
¹

(k) and ªW
¹

(k), needed in
the ¯ltering algorithm, can be computed following
the same lines of (Carravetta et al., 1997; Germani
et al., 2003).
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