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Abstract: In this paper, the delayed (memory) feedback synthesis problem for
linear parameter varying (LPV) systems with parameter-varying time delays is
introduced and addressed. It is assumed that the state-space data and the time-
delay depend continuously on the parameters which are measurable in real-time
and vary in a compact set with bounded variation rates. Synthesis conditions for
stabilization and L2 norm performance using delayed state feedback and delayed
output feedback are formulated in terms of Linear Matrix Inequalities (LMIs) that
can be solved efficiently. It is shown that time-delayed feedback control provides
advantages in terms of reduced conservatism, improved performance and ease
of controller implementation. Numerical examples are used to demonstrate the
improved performance of the proposed delayed feedback configuration compared
with that of the memoryless feedback schemes. Copyright c°2005 IFAC.
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1. INTRODUCTION

The dynamics of several practical engineering sys-
tems often depend on varying system parameters.
Such systems have come to be known as lin-
ear parameter-varying (LPV) systems (Shamma
and Athans, 1991). This paper will be concerned
with LPV time-delayed systems with parameter-
varying delays of the form

ẋ(t) =A(ρ)x(t) +Ah(ρ)x(t− h(ρ)) (1a)

+B1(ρ)w(t) +B2(ρ)u(t),

z(t) =C1(ρ)x(t) + C1h(ρ)x(t− h(ρ)) (1b)

+D11(ρ)w(t) +D12(ρ)u(t),

y(t) =C2(ρ)x(t) + C2h(ρ)x(t− h(ρ)) (1c)

+D21(ρ)w(t),
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where x(t) ∈ Rn is the state vector, w(t) ∈ Rnd

is the vector of exogenous inputs, u(t) ∈ Rnu is
the control input, z(t) ∈ Rnz the error output,
y(t) ∈ Rny denotes the measurement vector and
h(·) is a differentiable scalar function representing
the parameter-varying time delay. It is assumed
that the delay is bounded and the function t−h(t)
is monotonically increasing, that is h lies in the set

H ,
½
h ∈ C(R,R) : 0 ≤ h(t) ≤ H <∞,

ḣ(t) ≤ τ < 1,∀t ∈ R+

¾
. (2)

The initial data function

x(θ) = φ(θ), θ ∈ [−h(ρ(0)), 0] , (3)

is a given function in the set of continuous func-
tions C([−H, 0],Rn). It is assumed that all the
state-space matrices and the time-delay function
h(·) are known continuous functions of a time-
varying parameter vector ρ(·) ∈ Fν

P , where Fν
P is



the set of allowable parameter trajectories defined
as

Fν
P ,

½
ρ ∈ C(R,Rs) : ρ(t) ∈ P,

|ρ̇i(t)| ≤ νi, i = 1, 2, . . . , s,∀t ∈ R+

¾
,

(4)
where P is a compact subset of Rs, {νi}si=1 are
non-negative numbers and ν = [ν1, ν2, . . . , νs]

T . It
should be noted that the parameter-dependence
will be suppressed in the following presentation
whenever it is obvious.

Time-delayed linear systems has been a fertile
area of research, see (Niculescu and Gu, 2004;
Dugard and Verriest, 1998) and the numerous
references therein. There is a large body of
work concerned with analysis and control for
time-delay systems in the time domain, more
specifically using Lyapunov’s second method.
The stability property of time-delayed systems
is usually assumed to lie in one of the follow-
ing two categories: delay-independent or delay-
dependent stability. There are two generally ac-
cepted ways of developing the second method
of Lyapunov for time-delayed systems, one us-
ing the Lyapunov-Krasovskii functional approach
and the other via Lyapunov-Razumikhin functions
(Hale and Lunel, 1993). Delay-dependent prop-
erties are derived by using a transformed sys-
tem on [t− 2h, t] which is obtained by applying
the Leibnitz-Newton formula for the original sys-
tem. It is usual practice to use the Lyapunov-
Razumikhin theory to obtain delay-dependent
properties and Lyapunov-Krasovskii functionals
for delay-independent properties.

The development of results for LPV time-delayed
systems have followed corresponding methods
developed for linear time-invariant (LTI) time-
delay systems with initial work being reported in
(Wu and Grigoriadis, 2001) where state feedback
control design for desired L2-gain performance
was presented. The extension to output feedback
control for LPV time-delayed systems with L2
and L2 − L∞ performance requirements was car-
ried out in (Tan and Grigoriadis, 2000; Tan et
al., 2003). Other than these results on output
feedback control, most of the related research
has focused on obtaining less conservative stabil-
ity properties and better estimates of maximum
time delays for delay-dependent properties using
progressively more complex Lyapunov functionals
(Zhang et al., 2002).

This paper is concerned with delay-independent
analysis and feedback control of LPV time-
delayed systems wherein the desired property
holds for all positive (and finite) values for the
delays. Particularly, the new idea is the use of
state feedback and output feedback induced L2-
gain controllers having memory in the control
action. Synthesis conditions are obtained for sta-

bilization and L2 norm performance using such
delayed control in terms of LMIs. The designed
controllers are also time-delayed and hence are
infinite-dimensional systems. In contrast to mem-
oryless controllers proposed so far in time-delayed
systems theory (Niculescu, 1998), the advantages
in terms of reduced conservatism, improved per-
formance and implementation ease due to the
explicit inclusion of time-delayed feedback terms
in the control law are illustrated.

The paper is organized as follows. Section 2 re-
views the sufficient analysis conditions for a time-
delayed LPV system to be stable and provide a
prescribed level of induced L2 performance gain
γ. The delayed state feedback and the delayed
output feedback control synthesis conditions are
developed in Sections 3 and 4 respectively. Sec-
tion 5 demonstrates the improved performance
achieved by the use of delayed feedback via nu-
merical examples. Section 6 concludes the paper.

2. ANALYSIS OF TIME-DELAYED LPV
SYSTEMS

Consider the time-delayed LPV system described
by the state space equations (1). The following
result (Tan et al., 2003) provides a sufficient con-
dition for the induced L2 gain performance of the
uncontrolled time-delayed LPV system (u ≡ 0) to
be less than a given bound γ, that is

sup
ρ∈Fν

P
sup

kwk2 6=0

kzk2
kwk2

≤ γ

Theorem 1. Consider the uncontrolled time-delayed
system (1a)-(1b) with initial data φ ≡ 0. If there
exist continuously differentiable matrix functions
P,Q : Rs −→ Sn×n+ , P (ρ) > 0, Q(ρ) > 0 such
that the functional linear matrix inequality

Λ(P,Q, ρ, r) < 0 (5)

where

Λ11 =AT (ρ)P (ρ) + P (ρ)A(ρ)

+
sX

i=1

±
µ
νi
∂P

∂ρi

¶
+Q(ρ)

Λ21 =AT
h (ρ)P (ρ)

Λ22 =−
"
1−

sX
i=1

±
µ
νi

∂h

∂ρi

¶#
Q(r)

Λ31 =BT
1 (ρ)P (ρ),Λ32 = 0

Λ41 =C1(ρ),Λ42 = C1h(ρ)

Λ33 =Λ44 = −γI,Λ43 = D11(ρ)

holds for all ρ, r ∈ P, |ρ̇i| ≤ νi, then the time-
delayed system (1a),(1b) is asymptotically stable
and has induced L2 gain less than γ.



3. STATE FEEDBACK CONTROL

In this section, the problem of designing a
parameter-dependent state feedback controller for
a time-delayed LPV system, which minimizes the
induced L2 gain of the system is investigated.
First, a result from (Wu and Grigoriadis, 2001)
which deals with the design of memoryless state
feedback controllers is reviewed. Next, an exten-
sion of the synthesis result to delayed state feed-
back is provided. It is shown that delayed feed-
back control results in reduced conservatism, im-
proved performance and ease of implementation
compared to memoryless control.

Consider the time-delayed LPV system (1) where
the measurement equation is now

y(t) = x(t). (6)

In addition, it is assumed that for all ρ ∈ P
A1 D12(ρ) has full column rank.
A2 (A(·), B2(·)) is asymptotically stabilizable.
A3 C1(ρ), C1h(ρ) and D12(ρ) have the following
normalized structure:

C1 =

·
C11
C12

¸
, C1h =

·
C11h
C12h

¸
,D12 =

·
0
I

¸
.

3.1 Memoryless state feedback

A parameter-dependent state feedback controller

u(t) = F (ρ(t), ρ̇(t))x(t) (7)

is to be designed for the LPV time-delayed system
(1) such that the closed-loop system is asymptoti-
cally stable and has induced L2 norm less than
a specified bound γ. Using the state feedback
control law (7) the closed-loop system becomes:

ẋ(t) =AFx(t) +Ahx(t− h(ρ)) +B1w(t), (8)

z(t) =CFx(t) + C1hx(t− h(ρ)) (9)

where AF , A(ρ) + B2(ρ)F (ρ, ρ̇) and CF ,
C1(ρ) + D12(ρ)F (ρ, ρ̇). The following result (Wu
and Grigoriadis, 2001) provides conditions for the
closed-loop system (8),(9) to be asymptotically
stable and have induced L2 gain less than γ.

Theorem 2. Consider the time-delayed LPV sys-
tem (1a),(1b). There exists a parameter-dependent
memoryless state feedback controller (7) such that
the closed-loop system is asymptotically stable
and has induced L2 gain less than γ if there ex-
ists a continuously differentiable matrix function
R : Rs −→ Sn×n+ and a matrix S ∈ Sn×n+ , such
that for all ρ ∈ P

Φ(R,S, ρ)< 0 (10)

−γI + ψC1h(ρ)SC
T
1h(ρ)< 0, (11)

where

Φ11 =R(ρ)ÂT (ρ) + Â(ρ)R(ρ)−
sX

i=1

±
µ
νi
∂R

∂ρi

¶
+ψÂh(ρ)SÂ

T
h (ρ)− γB2(ρ)B

T
2 (ρ)

Φ21 =R(ρ),Φ22 = −S,Φ31 = BT
1 (ρ),

Φ32 = 0,Φ33 = −γI,Φ42 = 0,Φ43 = 0,
Φ41 =C11(ρ)R(ρ) + ψC11h(ρ)SÂh(ρ),

Φ44 =−γI + ψC11h(ρ)SC
T
11h(ρ),

ψ,
"
1−

sX
i=1

±
µ
νi

∂h

∂ρi

¶#−1
,

Â,A−B2C12, Âh , Ah −B2C12h.

Moreover one such memoryless state feedback
control law that provides a guaranteed L2 gain
performance γ is given by

F (ρ(t), ρ̇(t)) = −F−11 (ρ(t), ρ̇(t))× F2(ρ(t), ρ̇(t))
(12)

where

F1 = I+γ−1C12h


Ã
1−

sX
i=1

ρ̇i
∂h
∂ρi

!
S−1

−γ−1CT
1hC1h


−1

CT
12h

and

F2 =C12h ×
"
−γ−1CT

1hC1h +

Ã
1−

sX
i=1

ρ̇i
∂h
∂ρi

!
S−1

#−1
× £AT

hR
−1 + γ−1CT

1hC1
¤
+ γBT

2 R
−1 + C12

3.2 Delayed state feedback

In this section, the analysis result in Section 2 is
used to design a delayed state feedback controller
for LPV systems with parameter-dependent state
delays. Consider again the open loop system given
by (1a),(1b) with the measurement equation (6),
and assume that the assumptions A1 - A3 hold.
The goal is to design a parameter-dependent de-
layed state feedback law

u(t) = F (ρ, ρ̇)x(t) + Fh(ρ, ρ̇)x(t− h(ρ)) (13)

to stabilize the closed-loop systems and provide
a desired closed-loop L2 gain performance γ. Al-
though, the measurement gives the current state
vector x(t), memory is introduced in the feedback
term so that it has the form (13). The closed-loop
system with the feedback law in (13) is

ẋ(t) =AFx(t) +AhFx(t− h) +B1w(t),(14a)

z(t) =CFx(t) + ChFx(t− h), (14b)

where AF , CF are as before and AhF = A(ρ) +
B2(ρ)Fh(ρ, ρ̇) and ChF , C1h(ρ)+D12(ρ)Fh(ρ, ρ̇).
The following result provides sufficient conditions



for the closed-loop system (14) to be asymptot-
ically stable and have induced L2 gain less than
γ.

Theorem 3. Consider the time-delayed LPV sys-
tem (1a),(1b). There exists a parameter-dependent
delayed state feedback controller (13) such that
the closed-loop system (14) is asymptotically sta-
ble and has induced L2 norm less than γ if there
exists a continuously differentiable matrix func-
tion R : Rs −→ Sn×n+ and a matrix S ∈ Sn×n+ ,
such that the inequality (10) holds for all ρ ∈ P.
Moreover one such delayed state feedback control
law (13) that provides a guaranteed L2 gain per-
formance γ is given by

F (ρ) =−C12(ρ)− γBT
2 (ρ)R

−1(ρ) (15a)

Fh(ρ) =−C12h(ρ). (15b)

Proof. Omitted.

Remark 1. The synthesis LMIs obtained using the
delayed state feedback have a simplified structure
as the inequality (11) drops out, leading to less
conservative results and less computational bur-
den due to reduced number of constraints. The
state feedback gains for the delayed state feed-
back, given by (15) are simpler to implement when
compared to the memoryless state feedback gains
given by (12) since the measurement of the rate of
variation of the parameter vector ρ̇ is not required
for computing delayed state feedback gains at any
instant of time. Hence, delayed state feedback
results in improved performance and practically
implementable LPV controllers.

Remark 2. Note that, in deriving the above re-
sults Q was fixed to be a constant matrix as the
main idea in this paper is motivating the use of
delayed feedback. However, the extension to use
of parameter-dependent Q is straightforward and
will be used in the output feedback problem.

Remark 3. The delayed state feedback term in
(13) vanishes when C12h = 0 and the memoryless
state feedback control law is recovered.

4. DELAYED OUTPUT FEEDBACK
CONTROL

Consider the time-delayed LPV plant given by (1).
The memoryless output feedback induced L2-gain
performance problem for such a plant has been
investigated in (Tan and Grigoriadis, 2000; Tan
et al., 2003). In this paper, the following form for
the time-delayed LPV controller is introduced

ẋK(t) =AK(ρ)xK(t) +AKh(ρ)xK(t− h(ρ))

+BK(ρ)y(t), (16a)

u(t) =CK(ρ)xK(t) + CKh(ρ)xK(t− h(ρ))

+DK(ρ)y(t). (16b)

Theorem 4. If there exist continuously differen-
tiable matrix functions X > 0, Y > 0, and matrix
functions Σ = (Q11, Q21, Q22, K, Kh, L, M, Mh,
N) such that the inequalities

∆(X,Y,Σ, ρ, r)< 0 (17)·
Y I
I X

¸
> 0,

·
Q11 QT

21

Q21 Q22

¸
> 0 (18)

hold for all ρ, r ∈ P, |ρ̇i| ≤ νi (all matrix func-
tions, where not indicated, are assumed to be
functions of ρ ∈ P), where

∆11 =−Ẏ +AY + Y AT +B2M +MTBT
2 +Q11,

∆21 = (A+B2NC2)
T
+K +Q21

∆22 = Ẋ +XA+ATX + LC2 + CT
2 L

T +Q22

∆31 = (AhY +B2Mh)
T
,∆32 = KT

h ,∆33 = τQ11(r),

∆41 = (Ah +B2NC2h)
T
,∆42 = (XAh + LC2h)

T
,

∆43 = τQ21(r),∆44 = τQ22(r)

∆51 = (B1 +B2ND21)
T ,∆52 = (XB1 + LD21)

T ,

∆53 = 0,∆54 = 0,∆55 = −γI,
∆61 =C1Y +D12M,∆62 = C1 +D12NC2,

∆63 =C1hY +D12Mh,∆64 = C1h +D12NC2h,

∆65 =D11 +D12ND21,∆66 = −γI,

τ =−
"
1−

sX
i=1

±
µ
νi

∂h

∂ρi

¶#
,

then the closed-loop system formed by the inter-
connection of (1) and (16) is asymptotically stable
and has induced L2 gain less than γ. Moreover, if
matrix functions are determined that satisfy the
conditions of the theorem, then a delayed output
feedback controller of the form (16) can be com-
puted by reversing the transformations defined by
the following equations

N =DK (19a)

M =CKV
T +DKC2Y (19b)

L=UBK +XB2DK (19c)

K =UAKV
T + UBKC2Y +XB2CKV

T (19d)

+XB2DKC2Y +XAY + ẊY + U̇V T

Mh =CKhV
T +DKC2hY (19e)

Kh =UAKhV
T + UBKC2hY +XB2CKhV

T

+XB2DKC2hY +XAhY. (19f)

where the nonsingular matrix functions U, V are
computed from the relation

I −XY = UV T .



Proof. Omitted.

5. NUMERICAL EXAMPLES

5.1 Delayed state feedback

Consider the time-delayed linear parameter-varying
system (1) adopted from (Mahmoud and Al-
Muthairi, 1994) and modified to demonstrate the
advantages of delayed state feedback with system
data as follows

A=

·
0 1 + 0.2ρ1
−2 −3 + 0.1ρ1

¸
, Ah =

·
0.2ρ1 0.1

−0.2 + 0.1ρ1 −0.3
¸
,

B1 =

·
0.2
0.2

¸
, B2 =

·
0.2ρ1

0.1 + 0.1ρ1

¸
,D12 =

·
0
1

¸
,

C1 =

·
0 1
0 0

¸
, C1h =

·
0 0
1 0

¸
, h = 0.9ρ2.

The system is a state-delayed LPV system with
parameters ρ1(t) and ρ2(t). The parameter space
is [−1, 1] × [0, 1] and |dρi/dt| ≤ 1, i = 1, 2. The
synthesis problem is solved both for memoryless
state feedback and delayed state feedback and
the results are compared. From Theorem 2 an
induced L2 performance bound γmLPV = 1.4265 is
obtained for memoryless control. Using Theorem 3
an induced L2 performance bound γdLPV = 0.3838
is achieved for delayed control which denotes more
than 70% improvement in achievable performance
compared to memoryless control. For an initial
condition (x1(0), x2(0)) = (−2, 1), ρ1(t) = sin t,
ρ2(t) = |cos t| and a unit step disturbance w(t),
the closed-loop behavior of the system using both
memoryless and delayed state feedback is simu-
lated. The system states are shown in Figure 1.
The dotted line corresponds to closed-loop state
response with memoryless state-feedback and the
solid line is the response with the delayed state-
feedback. The control input profile is shown in
Figure 2. Both states x1 and x2 converge equally
rapidly (Figure 1). However the control effort
using the delayed state-feedback is significantly
less than that of the memoryless state-feedback
(Figure 2).

5.2 Delayed output feedback

Consider the same time-delayed LPV system as
before with ρ2 = ρ1 and the system data modified
as follows

B2 =

·
1
0.2

¸
, C1 =

·
0 1
0 0

¸
, C1h = 0

C2 =
£
1 0

¤
, C2h = 0, h = 0.5ρ1

It is assumed that ρ1(t) ∈ [0, 1] , |ρ̇1| ≤ 1.
A parameter-dependent memoryless output feed-
back controller is designed using the results in
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Fig. 1. State response with memoryless feedback
(dashed) and delayed feedback (solid).
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Fig. 2. Control input: Mermoryless f/b (dashed),
delayed f/b (solid).

(Tan et al., 2003) and a LPV time-delayed con-
troller using Theorem 4. All matrix functions in
the synthesis LMIs are assumed to be affine func-
tions of the scheduling parameter ρ1. The induced
L2 performance level achieved by the memoryless
output feedback controller is γmLPV = 2.5078 com-
pared to γdLPV = 0.2687 achieved by the delayed
output feedback controller which represents an al-
most 90% improvement in achievable performance
bounds with the use of delayed output feedback.
The disturbance signal w(t) shown in Figure 3
is applied to the time-delayed LPV system with
initial states (x1(0), x2(0)) = (−2, 1), ρ1(t) = sin t
and the time domain responses with memoryless
output feedback (dashed line) and delayed output
feedback (solid line) are compared in Figures 4
and 5. The error signal z(t) plotted in Figure 4
shows that delayed feedback clearly achieves supe-
rior performance (better disturbance attenuation)
when compared to memoryless output feedback
with similar control effort (Figure 5).

6. CONCLUSIONS

In this paper a delayed feedback control problem
for LPV systems with time-varying state delays is
proposed. A new control structure is introduced



0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

4

6

8

Time (s)

M
ag

ni
tu

de

Disturbance signal w(t)

Fig. 3. Disturbance signal w(t)

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

Time (s)

z

Error signal z(t)

Memory
Memoryless

Fig. 4. Error output z(t)

0 2 4 6 8 10 12 14 16 18 20
-14

-12

-10

-8

-6

-4

-2

0

2

4

Time (s)

u

Control signal u(t)

Memory
Memoryless

Fig. 5. Control effort u(t)

for state feedback and output feedback control
of time-delayed systems wherein the controller is
also time-delayed (infinite dimensional). The cor-
responding synthesis conditions for stabilization
and induced L2 norm performance are derived in
terms of LMIs. The proposed time-delayed con-
trol structure offers more degrees of freedom to
reduce conservatism and obtain better closed-loop
performance compared to memoryless control. In
addition, for the state feedback case practically
implementable controllers that are independent of
parameter variation rate are obtained. Numerical

examples are used to illustrate the advantage of
using delayed states in the feedback.

It is straightforward to specialize all the re-
sults to the case of LTI time-delayed systems
with constant or varying delays by making all
functions/matrices constant (independent of any
scheduling parameter). Further, new (less conser-
vative) conditions for stability/stabilizability of
time-delayed systems using delayed feedback can
be obtained. Applications of the proposed time-
delayed control structure for obtaining less conser-
vative delay-dependent closed-loop properties will
be considered in the future. However, it should be
noted that for time-varying delays the control im-
plementation will require more memory compared
to that for the case of constant delays.
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