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1. INTRODUCTION

In recent years, boundary control of flexible sys-
tems has become an active research area, due to
the increasing demand on high precision control
of many mechanical systems, such as spacecraft
with flexible attachment or robots with flexi-
ble links, which are governed by PDEs (partial
differential equations) rather than ODEs (ordi-
nary differential equations), see (Morgül, 2002a;
Morgül, 2001; Conrad and Morgül, 1998; Morgül,
1998; Guo, 2001; Guo, 2002; Chen, 1979; Chen
et al., 1987; Morgül, 2002b). In this research
area, the robustness of controllers against delays
is an important topic and has been studied by
many researchers, see (Datko et al., 1986; Datko,
1993; Logemann and Rebarber, 1998; Logemann
et al., 1996; Morgül, 1995), due to the fact that
delays are unavoidable in practical engineering.
All the available publications focus on the analysis
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of systems against a small delay, i.e., under what
conditions a very small delay will not cause in-
stability problem and can be therefore neglected?
An equally important and very practical issue is,
how to synthesize a boundary controller when the
delay is large and makes the systems unstable? To
the best of our knowledge, publications studying
this problem are very few. In this paper, we solve
the instability problem caused by large delays by
applying the Smith predictor to the boundary
control of the damped wave equation. The control
scheme is shown to be stable and robust against a
small difference between the actual delay and the
assumed delay.

The paper is organized as follows. In Sec. 2, the
Smith predictor is introduced briefly. Section 3
formulates the boundary control of the damped
wave equation and the control algorithm proposed
in this paper. In Sec. 4, the stability and robust-
ness issues of the control algorithm are discussed.
Finally, Sec. 4 concludes this paper.



2. A BRIEF INTRODUCTION TO THE
SMITH PREDICTOR

The Smith predictor was proposed by Smith in
(Smith, 1957) and is probably the most famous
method for control of systems with time delays,
see (Levine, 1996) and (Wang et al., 1999). Con-
sider a typical feedback control system with a
time delay in Fig. 1, where C(s) is the controller;
P (s)e−θs is the plant with a time delay θ.
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Fig. 1. A feedback control system with a time
delay

With the presence of the time delay, the transfer
function of the closed-loop system relating the
output y(s) to the reference r(s) becomes

y(s)

r(s)
=

C(s)P (s)e−θs

1 + C(s)P (s)e−θs
. (1)

Obviously, the time delay θ directly changes the
closed-loop poles. Usually, the time delay reduces
the stability margin of the control system, or more
seriously, destabilizes the system.

The classical configuration of a system containing
a Smith predictor is depicted in Fig. 2, where
P̂0(s) is the assumed model of P0(s) and θ̂ is
the assumed delay. The block C(s) combined

with the block P̂ (s) − P̂ (s)e−θ̂s is called “the
Smith predictor”. If we assume the perfect model
matching, i.e., P̂0(s) = P0(s) and θ = θ̂, the
closed-loop transfer function becomes

y(s)

r(s)
=

C(s)P (s)e−θs

1 + C(s)P (s)
. (2)

Now, it is clear what the underlying idea of
the Smith predictor is. With the perfect model
matching, the time delay can be removed from the
denominator of the transfer function, making the
closed-loop stability irrelevant to the time delay.

C(s) P (s)e� � s

P̂ (s) � P̂ (s)e� �̂ s

+ +

- -

yr

Fig. 2. The Smith predictor

3. BOUNDARY CONTROL OF THE DAMPED
WAVE EQUATION WITH LARGE DELAYS

Consider a string clamped at one end and is free at
the other end. We denote the displacement of the
string by u(x, t), where x ∈ [0, 1] and t ≥ 0. The
string is controlled by a boundary control force at
the free end. The governing equations are given as

utt(x, t) − uxx(x, t) + 2aut(x, t) + a2u(x, t) = 0,
(3)

u(0, t) = 0, (4)

ux(1, t) = f(t), (5)

where a > 0 is the damping constant and f(t) is
the boundary control force applied at the free end
of the string.

It is known that the following boundary feedback
controller stabilizes the system, see (Chen, 1979),

f(t) = −kut(1, t), (6)

where k > 0 is the constant boundary control
gain.

Now, we consider the presence of a time delay in
the feedback loop, which is shown as follows.

f(t) = −kut(1, t − θ), (7)

where θ is the time delay.

In (Datko et al., 1986) and (Logemann et al.,
1996), it was shown that if k and a satisfy

k
e2a + 1

e2a − 1
< 1, (8)

then the delayed feedback systems is stable for all
sufficiently small delays.

In this paper, we will solve the following problem:
what if the time delay θ is large enough to make
the system unstable? We will apply the Smith
predictor to solve this problem.

Comparing the equation (7) with Fig. 2, we can
see that in our case, the plant output y is the tip
end displacement u(1, t); the controller C(s) is a
derivative controller with the transfer function ks;
and P (s) is the transfer function from the control
force f(t) to the un-delayed displacement of the
tip end. If we assume P̂ (s) = P (s) and the time
delay θ is known, the remaining problem is how
to get P (s), which is shown as follows.

Assuming zero initial conditions of u(x, 0) and
ut(x, 0), take the Laplace transform of (3), (4),
and (5) with respect to t, the original PDE of
u(x, t) with initial and boundary conditions can
be transformed into the following ODE of U(x, s)
with boundary conditions.

d2U(x, s)

dx2
− (s + a)2U(x, s) = 0, (9)

U(0, s) = 0, (10)



Ux(1, s) = F (s), (11)

where U(x, s) is the Laplace transform of u(x, t)
and F (s) is the Laplace transform of f(t).

Solving the ODE (9), we have the following so-
lution of U(x, s) with two arbitrary constants C1

and C2 (s can be treated as a constant in this
step).

U(x, s) = C1e
−(s+a)x + C2e

(s+a)x. (12)

Substitute (12) into (10) and (11), we have the
following two equations.

C1 + C2 = 0, (13)

(−C1e
−(s+a) + C2e

s+a)(s + a) = F (s). (14)

Solving (13) and (14) simultaneously, we can
obtain the exact value of C1 and C2

C1 =
−F (s)

(s + a)(e−(s+a) + es+a)
, (15)

C2 =
F (s)

(s + a)(e−(s+a) + es+a)
. (16)

Now we have obtained the solution of U(x, s).
Substituting x = 1 into U(x, s), we obtain the
following Laplace transform of the tip end dis-
placement.

U(1, s) =
F (s)(1 − e−2(s+a))

(s + a)
(

1 + e−2(s+a)
) . (17)

So the transfer function of the plant, which is P (s)
in Fig. 2, is obtained as

P (s) =
U(1, s)

F (s)
=

1 − e−2(s+a)

(s + a)
(

1 + e−2(s+a)
) . (18)

Finally, we have the following expression of the
boundary controller (the Smith predictor), de-
noted as Csp(s):

Csp(s) =
ks

1 + ksP (s)(1 − e−θ̂s)
(19)

Notice that the controller (19) is physically imple-
mentable.

4. STABILITY AND ROBUSTNESS
ANALYSIS

In (Chen, 1979), the stability of the controller
(6) was proved for the boundary control of the
damped wave equation without delays. If the as-
sumed delay is equal to the actual delay, the Smith
predictor removes the delay term completely from
the denominator of the closed-loop transfer func-
tion. This means the stability of the controller (19)
is already proved.

Since the actual delay θ and the assumed delay θ̂

can not be exactly the same, another important
issue is the robustness of the controller (19), i.e.,
what if an unknown small difference ǫ between the
assumed delay and the actual delay is introduced
to the system, as shown in Fig. 3.
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Fig. 3. System with mis-matched delays

To study the robustness of the controller (19),
we will first introduce a theorem presented in
(Logemann et al., 1996) and (Logemann and Re-
barber, 1998).

Theorem 1. Let H(s) be the open-loop transfer
function as illustrated in Fig. 4 and DH the set
of all its poles. Define two closed-loop transfer
functions G0(s) and Gǫ(s) as

G0(s) =
H(s)

1 + H(s)
,

and

Gǫ(s) =
H(s)

1 + e−ǫsH(s)
.

Define again

C0 = {s ∈ C|ℜ(s) > 0},

and
γ(H(s)) = lim sup

|s|→∞,s∈C0\DH

|H(s)|.

Suppose G0 is L2-stable. If γ(H) < 1, then there
exists ǫ∗ such that Gǫ is L2-stable for all ǫ ∈
(0, ǫ∗).
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Fig. 4. Feedback system with delay

The underlying idea of the above theorem is that
the robustness of the closed-loop transfer function
G0(s) against a small unknown delay can be
determined by studying the open-loop transfer
function H(s). Now we can prove the robustness
of the controller (19).

CLAIM:



If θ̂ is chosen as the minimum value of the possible
delay and k is chosen to satisfy

k
e2a + 1

e2a − 1
≤

1

3
, (20)

then the controller (19) is robust against a small

difference ǫ between the assumed delay θ̂ and the
actual delay θ = θ̂ + ǫ.

Proof :

H(s) = Csp(s)P (s)e−θ̂s

=
ksP (s)e−θs

1 + ksP (s)(1 − e−θs)

Let T (s) = ksP (s), then

|H(s)| =
1

|( 1
T (s) + 1)eθ̂s − 1|

(21)

Let Q(s) = ( 1
T (s) + 1)eθ̂s − 1, then

|Q(s)|=
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In (Logemann et al., 1996), it was proved that

lim sup
|s|→∞,s∈C0

|T (s)| = k
e2a + 1

e2a − 1

So if k e2a+1
e2a−1 ≤ 1

3 , for |s| large enough,
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≥ 2 (23)

Considering |eθ̂s| > 1, we have

|Q(s)| > 1 (24)

So
lim sup

|s|→∞,s∈C0

|H(s)| < 1. (25)

Remarks:

• In Theorem 1, ǫ is positive. To satisfy this
condition, θ̂ should be chosen as the minimal
value of the possible delay.

• The damping constant a plays a key role
in making the controllers (both the original
derivative controller ks and the Smith predic-
tor) robust. if a = 0, the damped wave equa-
tion becomes the conservative wave equation,
the transfer function of which becomes

P (s) =
1 − e−2s

s(1 + e−2s)
. (26)

We can see that P (s) has infinite number
of poles on the imaginary axis. In order to
make γ(H(s)) < 1, controllers must cancel
these poles completely, which is impossible
due to the uncertainty of the plant parame-
ters. This means both the original derivative
controller ks and the Smith predictor are not
robust when applied to the boundary control
of the conservative wave equation.

5. CONCLUDING REMARKS

With the introduction of the Smith predictor,
the instability problem caused by large delays
in the boundary control of the damped equation
is solved. The control algorithm is also robust
against a small difference between the actual de-
lay and the assumed delay. Future work includes
studying the robustness of the controller against
the plant modelling errors and the controller per-
formance of the Smith predictor.
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