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1. INTRODUCTION 
 
Fast paced progresses in marine robotics are steadily 
affording scientists advanced tools for ocean 
exploration and exploitation. However, much work 
remains to be done before marine robots can roam 
the oceans freely, acquiring scientific data at the 
temporal and spatial scales that are naturally imposed 
by the phenomena under study. To meet these goals, 
robots must be equipped with systems to steer them 
accurately and reliably in the harsh marine 
environment. For this reason, there has been over the 
last few years considerable interest in the 
development of advanced methods for motion 
control of marine vehicles, including surface and 
underwater robots. Namely, point stabilization, 
trajectory tracking, and path following control 
methodologies. 
 
Point stabilization refers to the problem of steering a 
vehicle to a final target point, with a desired 
orientation. Trajectory tracking requires a vehicle to 
track a time-parameterized reference curve. Finally, 
path following control aims at forcing a vehicle to 
converge to and follow a desired spatial path, without 
any temporal specifications. The latter objective 

occurs for example when it is required that an 
autonomous surface vessel cover a certain area by 
performing a “lawn mowing” maneuver along 
desired tracks with great accuracy, at speeds 
determined by a scientific end-user. The underlying 
assumption in path following control is that the 
vehicle’s forward speed tracks a desired speed 
profile, while the controller acts on the vehicle’s 
orientation to drive it to the path. Typically, 
smoother convergence to a path is achieved when 
path following strategies are used instead of 
trajectory tracking control laws, and the control 
signals are less likely to be pushed to saturation. 
 
The paper addresses the problem of steering a fully 
actuated marine vehicle along a desired path. For 
previous work in this field, the reader is referred to 
(Aicardi, et al., 2001; Encarnação, et al., 2000; 
Encarnação and Pascoal, 2000; Fossen, 2002; 
Lapierre, et al., 2003) and the references therein. The 
new methodology adopted for path following control 
deals explicitly with vehicle dynamics and plant 
parameter uncertainty. Furthermore, it avoids tight 
constraints on initial conditions that are present in a 
number of path-following control strategies 
described in the literature. These issues have also 



been addressed in (Lapierre, et al., 2003) for the case 
of an underactuated autonomous underwater vehicle 
by resorting to pure backstepping techniques. The 
main contribution of the present paper is the 
development of an efficient two-stage procedure for 
the design of dynamic path following controllers. 
The new methodology departs considerably from 
mainstream work reported in the literature and 
resembles the inner-outer loop designs that are 
pervasive in the aircraft industry. First, a path 
following control law is designed based on the 
kinematics only. The strategy adopted at this stage 
borrows from the non-singular path following control 
strategy for wheeled robots introduced in (Soetanto, 
et al., 2003). The first step is then followed by the 
design of a robustly stabilizing controller for the 
vehicle dynamics. A coupling term in the final 
dynamic control law that emerges naturally out of the 
design procedure ensures stability of the resulting 
closed loop system. Controller design relies on 
Lyapunov theory, backstepping techniques, and the 
theory of differential inclusions. Simulation results 
illustrate the performance of the control system 
proposed. 
 
The paper is organized as follows. Section 2 contains 
the theoretical results that underpin the new 
methodology proposed for path following control 
system design. Section 3 describes the application of 
the methodology developed to the control of a fully 
actuated marine vehicle with parameter uncertainty. 
It also describes illustrative results obtained in 
simulation. Finally, Section 4 contains the summary 
and discusses related problems that warrant further 
research. 
 
 

2. MAIN THEORETICAL RESULT 
 
We start by stating and proving the following 
theoretical results that will be later applied to the 
development of a path following controller for a 
generic tug boat. 
 
Theorem. Assume the plant G to be controlled is 
given by 
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where the parameter p belongs to a compact set M 
and B(p) is invertible for all Mp ∈ . Further assume 
that the following conditions hold true. 
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If all aforementioned hold, then the control 
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will render the origin of system G globally 
asymptotically stable. 
 
Proof. Let u Ky v= +  and z y φ= + . 
Then 
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Define 1

TV V z Pz= +  and compute its derivative 
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Therefore, Mp∀ ∈  
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The proof follows by using the third assumption and 
taking Schur complements. 
 
 

3. APPLICATION: PATH FOLLOWING FOR A 
SUPPLY VESSEL 

 
In this section the results developed above are 
applied to the development of a path following 
control law for a supply vessel. 
 
 
3.1 Vehicle Modeling: Dynamics. 
 
The model of the vessel adopted in this paper can be 
found in (Fossen and Strand, 1999). Specifically its 
low frequency dynamics are written as 
 

Mv Dv τ+ =& ,  uB uτ = , 
 
where the state vector [ , , ]T

x yv v v r=  includes the 
surge, sway and yaw modes of the ship, the control 
vector τ  determines forces and moments generated 
by the propulsion system, u is the control input 
vector, and uB  is a constant matrix that represents 
the actuator configuration (see Fossen and Strand, 
1999). The mass matrix M and damping matrix D 
assume the following form 
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Detailed explanations of each term in the expressions 
above can be found in (Fossen and Strand, 1999; 
Fossen, 1994). However, of special interest is the 
parameter 0xv  which determines the surge speed of 
the vessel. Notice that other parameters in the 
matrices M and D (along with the explicit 
dependence of D23 and D33) can depend on 0xv . In 
this paper we assume that 0 0.xv >  
 
 
3.2 Path following: Problem Definition and System 

Equations. 
 
The presentation in this section is inspired by the 
work in (Soetanto, et al., 2003) to which the reader is 
referred for more details. With respect to Fig.1, let 
{I} denote an inertial frame and {F} a Serret-Frenet 
frame. Let P be an arbitrary point on the path to be 
followed and Q be the center of mass of the tug boat. 
Then Q can be resolved in {I} as [ ], ,0 T

Iq x y=  or in 

{F} as [ ]1 1, ,0 T
Fq s y= . Let cψ  denote the angle 

between {I} and {F}, 
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the rotation matrix from {I} to {F}, and c cr ψ= & . 
Then ,cr sκ= &  where s denotes the curvilinear 
abscissa of P along the path and κ  denotes the path 
curvature. Let the vector p denote the position of 
point P in {I}. The rate of change of p with respect to 
{I} resolved in {F} can be written as 
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Fig. 1. Path following problem geometry. 
 
On the other hand, the rate of change of q is 
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Straightforward computations show that (Soetanto, et 
al., 2003) 
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Denote by sψ  the angle between {I} and {B} and by 

Fψ  - the angle between {B} and {F}. Let sr ψ= & . 
Then, using simple algebra it can be shown that 
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Given any arbitrary velocity profile for the vessel, 
the path following problem can now be reduced to 
driving [ ]1 1, , T

Fs y ψ  to zero by rotating the vessel 
around its z-axis, i.e. by deriving an appropriate 
control law for r. 
 
Following the presentation in Section 2 let the 
parameter 0: xp v= . The complete system of equations 
for the path following problem is given by 
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Equations (3) are in the form of the equation (1) for 
the plant G used in the theorem of Section 2. Next 
we apply the results of this theorem to obtain a path 
following controller for the supply vessel. 
 
3.3 Path Following: Controller Design. 
 
First, we shall obtain a stabilizing controller φ  for 
the kinematics. Consider the candidate Lyapunov 
function 
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Notice how the rate of progression of point P along 
the path is here viewed as an extra control input.  
Using the difference of sines and cosines formulae it 
is easy to show that 
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Section 2, 0 min
1 1 2, ,

Tu
b K K

ε
⎡ ⎤= ⎢ ⎥⎣ ⎦

 and 

 

( )

1 1

2 1 1

1

cos sin

( cos:

  sin ) ( sin sin

   cos cos )

x F y F

x

y

F x F

y F x F x
F

y F y

K s v v
v
v

K K s v
y

v v v

v v

ψ ψ

ψ δ δ κ ψφ

ψ ψ δ
ψ δ

ψ δ

+ −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
− − + + += ⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥−
⎢ ⎥+ −⎢ ⎥⎣ ⎦

& . 

 
To obtain 2b , and 3b , express φ  as follows 
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(the expression for Ξ  is given by 
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Using simple algebra and the last two terms in the 
expression above it can be shown that 0max
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Finally, using basic trigonometry we obtain that 
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Therefore, 2 2
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Next, a stabilizing controller 0( )K u  is determined 
using the theory of differential inclusions, see (Boyd, 
et al., 1994; El Ghaoui and Niculescu, 2000 and the 
references therein). Suppose the surge speed of the 
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1P Y −=  and 0 0( ) ( )x xK v W v P= . Then 0( )xK v  and 
0P >  satisfy the second assumption of the theorem 

of Section 2 and can now be used to obtain the 
positive definite matrix zK . 
 
Following the third assumption of this theorem and 
using notation (2), suppose 0zK∃ >  such that 
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Then the control 
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renders the origin of system (3) globally 
asymptotically stable. 
 
3.4 Simulation Results. 
 
This section illustrates the performance of the 
nonlinear controller obtained above in simulation 
with a dynamic model of a surface vessel. The 
simulation experiment required that the vessel 
approach and track a circle. Figure 2 includes the 
position plot. It illustrates the algorithm’s 
performance when capturing a circle from a large 
initial offset. Clearly, the controller developed  
performs the task well. 
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Figure 2. Circle tracking with large initial offset. 
 
Figure 3 includes time histories of several key 
variables. In particular, it shows that the forward and 
lateral errors 1s  and 1y , respectively converge 
smoothly to zero in the vicinity of 150 sec (this is 
due to a large initial error). Furthermore, the function 
δ  introduced to provide a desired shape to the 
steering command starts by commanding 90º-turn 
initially, then converges to zero when the vehicle 
captures the commanded path. 
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Figure 3. Time histories of 1s , 1y , δ , and cr . 

 
 

4. CONCLUSIONS 
 
The paper introduced a new methodology for the 
design of path following controllers for fully actuated 
marine vehicles with parameter uncertainty. Its main 
contribution was the development of an efficient 
two-stage design procedure that resembles inner-
outer loop designs that are commonly used in the 
aircraft industry. As such, it departed considerably 
from mainstream work reported in the literature. 
Simulation results illustrated the performance of the 
control system proposed. Future work will address 
the extension of the results to underactuated marine 
and underwater vehicles. 
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