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Abstract: The issue of optimal time-varying operation for transport-reaction
processes is considered, when the cost functional and/or equality constraints
necessitate the consideration of phenomena that occur over disparate length scales.
Multiscale process models are initially developed, linking continuum conservation
laws with microscopic scale simulators. Subsequently, order reduction techniques
for dissipative partial-differential equations are combined with adaptive tabulation
methods for microscopic simulators to reduce the computational requirements of
the optimization problem, which is then solved using standard search algorithms.
The method is demonstrated on a thin film deposition process, where optimal sur-
face temperature profiles and inlet switching times that simultaneously maximize
thickness uniformity and minimize surface roughness across the film surface are
computed. Copyright c©2005 IFAC
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1. INTRODUCTION

Ever tightening product quality specifications
have motivated the development of process models
using increasingly complex and detailed process
descriptions such as Molecular Dynamics (MD),
Monte Carlo/kinetic Monte Carlo (MC/kMC)
simulations, because of their ability to describe
mesoscopic/microscopic length-scale phenomena
which are inaccessible with traditional contin-
uum laws. However, the computational require-
ments associated with these models limit their
applicability only to micro-size domains. To this
end, hybrid continuum/atomistic multiscale mod-
els have been developed that augment the con-
tinuum macroscopic description of a process by
embedding microscopic or mesoscopic descrip-
tions only at small domains where finer, than
the one provided by macroscopic models, reso-
lution is required (Garcia et al., 1999; Li et al.,
1999; O’Connell and Thompson, 1995; Flekkoy
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and Feder, 2000; Broughton et al., 1999; Vla-
chos, 1997).

Steady-state macroscopic process models are typ-
ically derived from conservation laws for mass,
momentum and energy, and comprise of spatially-
distributed partial differential equations (PDEs).
On the other hand, microscopic models are usu-
ally unavailable in closed-form and their “inte-
gration” involves successively advancing the state
of the system by small incremental time-steps.
Note that MD, kMC and Lattice-Boltzmann-
based “black-box” timesteppers fit into the above
description. The standard optimization procedure
for macroscopic (PDE-based) process descriptions
is to discretize the PDEs using finite differ-
ence/elements (FD/FE) and subsequent solution
of the large-scale nonlinear program (NLP) using
techniques such as reduced gradient or reduced
successive quadratic programming (Floudas and
Pardalos, 1992). An alternate methodology is to
formulate reduced-order approximate NLPs by
spatial discretization combining the method of



weighted residuals with empirical eigenfunctions
and solve the NLP using standard search algo-
rithms (Bendersky and Christofides., 2000). To
address the issue of model unavailability for pro-
cess when black-box simulations form part of the
equality constraints, optimization methodologies
for noisy black-box functions have also been devel-
oped (Kelley and Sachs, 2003; Meyer et al., 2002).
However, optimization methodologies for multi-
scale process models are still lacking.

The current work addresses the issue of efficient
solution of optimization problems when cost func-
tional and/or equality constraints span multiple
length scales and necessitate multiscale process
models. Order-reduction techniques for macro-
scopic process models are linked with adaptive
tabulation schemes for the solution data from
microscopic models to derive computationally ef-
ficient multiscale models which form the equality
constraints of the optimization problem. The pro-
posed method is applied to a conceptual thin-film
epitaxy process with two simultaneous objectives
that span multiple length scales: a) to maximize
the thickness uniformity of the deposited film
(macroscopic objective), and b) to minimize the
surface roughness of the deposited film (micro-
scopic objective) across the wafer surface at the
end of the process cycle. Mathematically the pro-
cess is modeled using continuum conservation laws
and the microscopic film-surface processes are
modeled using kMC simulations. Time-varying
substrate temperature radial profile and inlet con-
centration profiles of the precursors are employed
as design variables and quasi-steady state process
operation is assumed.

2. PROBLEM FORMULATION

Mathematically, the spatially distributed and
multiscale process can be represented as:

0 = A(x) + f(x, d), on Ω1

d =
n∑

i

di(z)(H(t− t̄i)−H(t− t̄i+1))
(1)

xm(ti) = Π(xm(ti−1), δt, x|γ), on Ω2

δt = ti − ti−1
(2)

g(x,
dx

dη
) = 0, on Γ \ γ (3)

h(x̄s, x|γ ,
dx

dη
) = 0, on γ (4)

Eq.1 and Eq.2 represent the macroscopic and
microscopic descriptions of the process over the
respective domains Ω1 and Ω2. It is assumed that
Ω1 and Ω2 do not overlap and share a common
interface γ, and Ω = Ω1 ∪ Ω2 spans the whole
process domain. x(z) ∈ IRN denotes the vector

of macroscopic state variables, xm(ti) is the vec-
tor of microscopic state variables at time-instant
ti, z = [z1, z2, z3]∈Ω1⊂IR3 is the vector of spa-
tial coordinates and Γ is the boundary of the
macroscopic domain Ω1. A(x) is a second order
dissipative, possibly nonlinear, spatial differential
operator, f(x, d) is a nonlinear vector function
which is assumed to be sufficiently smooth with
respect to its arguments, d ∈ IRp is the vector of
design variables and t̄i is the time-instant when

the design variables are varied. g(x,
dx

dη
), defined

on the boundary Γ \ γ is a nonlinear vector func-
tion which is assumed to be sufficiently smooth,
and η is the spatial direction perpendicular to
the boundary Γ. It is assumed that the time
horizon over which all the dynamics of the eigen-
modes of Eq.1 relax, tsi , is negligible in comparison
to δt̄i = t̄i+1 − t̄i, implying that the process
is operating under quasi-steady-state conditions.
Function, Π, can be thought of as a black-box
timestepper, which interacts via an input/output
structure and may be unknown in closed-form. It
uses xm(ti−1) and the macroscopic state at the
interface γ as input, evolves over the time-interval
δt, and produces state xm(ti). The vector function

h(x̄s, x|γ ,
dx

dη
) represents the boundary conditions

at the common interface between the macroscopic
and microscopic domains, and x̄s represents the
stationary-state of the “coarse” realization, x̄, of
xm. It is assumed that such stationary state exists
and is independent of the initial microscopic state,
i.e. xm(t = 0). The coarse variables, x̄, can be pro-
jected onto the microscopic state variables, xm,
and vice versa, through the restriction and lifting
operations x = L(xm), xm = l(x̄), respectively
(note that the lifting operation leads to a number
of possible xm for a given x̄; for a detailed analysis
the reader may refer to (Kevrekidis et al., 2003)).

A general optimization problem for the multiscale
system of Eqs.1-4 can be formulated as:

min G(x, x̄s, d, δt̄i) =
n∑

i

∫

Ω

G(x, x̄s, d, δt̄i)dz

s.t

A(x) + f(x, d) = 0,

g(x,
dx

dη
) = 0 on Γ, h(x̄s, x,

dx

dη
) = 0, on γ

p(x, d) ≤ 0, ∀ z ∈ Ω1

(5)

where G(x, x̄s, d, δt̄i) is the objective functional
and measures the process performance at both
macroscopic and microscopic levels and p(x, x̄, d)
is the vector of inequality constraints which may
include bounds on state and design variables.
Time-intervals δt̄i and design variables di (of
Eq.1) are the optimization variables.



3. OPTIMIZATION PROBLEM SOLUTION

Finite-dimensional approximations to the semi-
infinite dimensional program of Eq.5 can be ob-
tained through spatial discretization of equality
constraints and objective functional to formulate
a Nonlinear Program (NLP). Brute-force spatial
discretization employing FD/FE result in a large
set of algebraic equations, and subsequent stor-
age and computational requirements of the for-
mulated NLP may become prohibitive requiring
the use of specially designed algorithms for large-
scale optimization problems. Inclusion of black-
box timesteppers into the multiscale model fur-
ther increases the computational demands. To
address this issue, nonlinear order reduction for
PDEs (Bendersky and Christofides., 2000) us-
ing Karhuenen-Loéve expansion (KLE) is coupled
with in situ adaptive tabulation (Pope, 1997)
to formulate reduced-order-multiscale models that
can be employed to efficiently solve multiscale
optimization problems.

The eigenspectrum of elliptic PDEs is charac-
terized by a finite number of dominant eigen-
modes (Christofides, 2001), a property that con-
stitutes the basis of KLE. These dominant eigen-
modes can be identified empirically using KLE
on an appropriate ensemble (for details about
construction of ensemble the reader may refer to
(Bendersky and Christofides., 2000; Armaou and
Christofides, 2002) and references therein) of PDE
solution data. These eigenmodes, known as empir-
ical eigenfunctions, can be subsequently employed
as basis functions with the method of weighted
residuals, to derive systems of algebraic equa-
tions, which have significantly smaller dimension
than those derived using FD/FE discretization
methods. Subsequently the NLP can be solved
using standard gradient-based or direct search
algorithms.

The calculation of coarse stationary states, x̄s,
through black-box timesteppers is usually a com-
putationally expensive task. To facilitate efficient
incorporation of black-box simulators, stationary-
state coarse solution data (i.e., x̄s) of black-box
timesteppers are tabulated offline for the entire
realizable region spanned by x|γ . Necessary in-
formation from tabulated data can be obtained
through interpolation, as required by the macro-
scopic solver. We employ adaptive tabulation to
tabulate only the accessed region, which may be
unknown a priori. The table is constructed on
demand, when interpolation results of previously
tabulated data are not accurate. The efficiency
of adaptive tabulation increases if the accessed
region is a small subset of the realizable region and
contains domains with relatively large gradients.

An iterative solution algorithm that is applicable
to a broad class of multiscale processes modeled
by Eqs.1-4 is outlined below.

(1) Select an arbitrary (but physically consis-
tent) initial condition xm(t = 0) and x|γ ,
and evolve the black-box timestepper till x
reaches a stationary value (denoted as x̄s).

(2) Solve Eq. 1 subject to boundary conditions
given by Eqs. 3 and 4, either analytically or
numerically to obtain new x|γ denoted as x′i.

(3) Repeat steps 1 and 2 to obtain x′i+1 until
x′i − x′i+1 is below an acceptable tolerance.

Subsequently, the reduced order model can be in-
corporated as an equality constraint into standard
search algorithms such as BFGS, Luus-Jaakola,
Hooke-Jeeves etc., to obtain the optimal solution.

4. APPLICATION TO THIN FILM GROWTH

The proposed optimization methodology is ap-
plied to a conceptual thin-film growth process,
where the objective is to compute an optimal
time-varying process operation that simultane-
ously minimizes spatial thickness nonuniformity
and surface roughness of the deposited film at
the end of the process cycle. Figure 1 depicts the
schematic of the reactor with split inlet configu-
ration. The bulk of the reactor is modeled using
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Fig. 1. Schematic of the reactor with split inlet
configuration.

Table 1. Design and process parameters.
Reactor radius 2 in
Substrate radius (Rs) 1.5 in
Number of inlets 3
Substrate to inlet distance (z0) 3 in
Reactor pressure 0.1 atm
Inlet & reactor wall temperature 300 K
Inlet velocity 80 cm/s
Substrate temperature (Ts) 900-1300K
Inlet mass fraction of species A (XA) 0.4×10−2

Inlet mass fraction of species B (XB) 0.6

2-dimensional axisymmetric PDEs in cylindrical
coordinates derived from continuum conservation
principles. The surface of the growing film is mod-
eled using kMC simulations. Figure 1 also shows
the domains of description of the two models. It
should be noted that the microscopic domain is in-
finitesimally thin. Substrate temperature profiles
are manipulated using three circular heaters with



heat being conducted in the in-between areas. Ta-
ble 1 tabulates the reactor geometry and process
conditions. Gaseous species A and B represent the
precursors of a and b (components of compound
semiconductor ab) respectively and are assumed
to undergo the following gas-phase reactions in
the bulk of the reactor and gas-surface reactions
on the wafer surface, shown in Table 2.

Table 2. Process reaction scheme
Reaction k0 E

(G1) A → A′ + C 1× 1014 39.9
(S1)A′ → a(s) + D 0
(S2) B → b(s)

Reaction G1 represents the thermal decomposi-
tion of precursor A into A′ which adsorbs on the
substrate (reaction S1). The rate-parameter for
adsorption of A′ (reaction S1) is assumed to follow

that of an ideal gas, i.e. ka = s0

√
RT

2πM , where s0

is the sticking coefficient. The rate of adsorption
of B (reaction S2) is assumed to be equal to S1 so
that the stoichiometry of the film is preserved. In
addition to adsorption, diffusion and desorption
of adsorbed species are other significant processes
that affect the structure of the surface. The rate
of desorption of surface species into the gas phase
and the rate of surface diffusion is calculated as:

kn
d = kd0e

−Ed0+n∆E

kBT , kn
m =

kBT

h
e
−E+n∆E

kBT (6)

where h is Planck’s constant, E and Ed0 are the
energy barriers for surface diffusion and desorp-
tion respectively, ∆E is the interaction energy
between two neighboring adsorbed species and
n ∈ {0, 1, 2, 3, 4} is the number of nearest neigh-
bors. The values of E, Ed0, ∆E and kd0 are taken
as 2.5 eV , 2.5 eV , 0.5 eV and 1×1013 respectively.

The macroscopic description of the process under
consideration is given by the following conserva-
tion equations:

5 · (ρu) = 0; 5 · (ρu u)−5 ·T− ρg = 0

5 · (ρuT )] = −5 ·q−
∑

k

hkWkω̇

5 · (ρuYk) = −5 ·jk + Wkω̇k; k ∈ {1, 2, 3, 4}
jk = −Dkρ5 Yk −DT,k

5T

T

(7)

where ρ is the gas-phase density, u is the fluid
velocity vector, T is the stress tensor, Cp is the
specific heat capacity, T is the temperature, q is
the heat flux due to conduction and hk, Wk and Yk

are the partial specific enthalpy, molecular weight
and the mass fractions of gas species. ω̇k and jk
are the net production rate due to homogeneous
reactions and mass flux respectively of species k.
Dk and DT,k in the flux equation correspond to
mass diffusion and thermal diffusion coefficients,
respectively.

The flux boundary condition at the deposition
surface is given by (Vlachos, 1997):

j = Rad = kaCA′ |s− < kd > f(Ca.s, T, wA′A′) (8)

where Rad is the net rate of adsorption, Ts is the
surface temperature, < kd >, CA′ |s and Ca.s are
the effective desorption rate, concentration of A′

over the substrate and average surface concen-
tration of adsorbed a(s), respectively. Function f
describes the influence of lateral interactions on
the desorption rate, which cannot be ascertained
without knowledge of surface structure. We em-
ploy kMC to account for the surface structure and
estimate the right hand side of Eq. 8, which links
the two levels of descriptions.

kMC approximates the solution of the stochastic
master equation (Fichthorn and Weinberg, 1991)
through Monte-Carlo sampling

∂P (σ, t)
∂t

=
∑

σ′
W (σ′, σ)P (σ′, t)−W (σ, σ′)P (σ, t)

where σ and σ′ are system configurations and
P (σ, t) is the probability that the system is in
state σ at time t, and W (σ, σ′) is the probability
per unit time of transition from σ to σ′. It is
assumed that at any instant, only a single event
(out of all possible events) occurs, according to
its relative probability. After each event, time is
incremented by δt, given as:

δt = − lnr∑
i Ψi

= − lnr

kaNT +
∑4

n=0 km,nNn

(9)

where r is a random number between 0 and 1
and Ψi is the propensity function of event i. The
summation in the denominator is carried over all
possible events and transition probabilities are
adjusted after each event. NT is the total number
of surface sites and Nn is the number of sites
with n nearest neighbors. The surface roughness
is computed from (Lou and Christofides, 2003):

R =
1

2NT

∑

i,j

(|hi+1,j − hi,j |+ |hi,j−1 − hi,j |

+|hi−1,1 − hi,j |+ |hi,j+1 − hi,j |)
(10)

where hi,j is the number of atoms adsorbed at the
(i, j)th surface site.

Initially, precursor A flows through the innermost
inlet and B through the two outer inlets (ABB
configuration of inlet). During the process oper-
ation the two gas streams in the two innermost
inlets can be interchanged to result in a distinct
(BAB) inlet configuration. The transient evolu-
tion of the process following the switch is ne-
glected (quasi-steady-state approximation). It is
proposed that by optimally switching from ABB



to BAB configuration and controlling the sub-
strate temperature profile before and after the
switching, both optimization objectives can be re-
alized. Mathematically, the optimization problem
can be formulated as:

min F =

R0∫

0

{
w1[T (r)− Tobj ]2 + w2R(r)

}
dr

s.t.

T =
n∑

i=1

δt̄iRdep; δt̄i = t̄i+1 − t̄i

uk =
n∑

i=1

uk,i[H(t̄i+1)−H(t̄i)] k ∈ {1, 2, 3}
900 ≤ Ts(uk) ≤ 1300 Rdep = kaCA′ at γ

(11)

where F is the objective functional, T is the thick-
ness of film at the end of the process, Tobj is the
target thickness of the film, Rdep is the deposition
rate of species a, R is the surface roughness of
the deposited film, δt̄i is the time-interval for ith

switching, Ts is the surface temperature and uk

is the magnitude of actuation. R0 is the cutoff
radius, which is taken to be a fraction of the
substrate radius, thus discounting the unavoidable
edge effects. The objective function penalizes any
deviation of final film thickness from the target
thickness (macroscopic objective) and high values
of the spatially-averaged roughness of the film
(microscopic objectives). Additional constraints
on the optimization problem arise from the re-
duced order process model, whose explicit form
is omitted for brevity. The design variables of
the optimization problem are the magnitudes of
actuation uk and the time-intervals δt̄i.

An ensemble of solution data (“snapshots”) was
generated by varying the substrate temperature
(u1, u2 and u3) for both ABB and BAB inlet
configurations and solving the resulting system
using the proposed multiscale algorithm. For the
generation of snapshots, the macroscopic domain,
Ω1, was discretized using finite differences into
6201 nodes and the resulting system of nonlinear
algebraic equations was solved using a Newton-
Krylov-based solver. Specifically, an ensemble of
729×2 snapshots was generated. 3, 62 and 52
eigenfunctions were identified using KLE, respec-
tively, for temperature and mass fraction profiles
of A and A′ across the reactor, which captured
more than 99.999% of the energy of the ensem-
ble. Hence, the reduced order model comprised of
117 (as opposed to 6201×3) nonlinear algebraic
equations. Coarse data of kMC simulations was
tabulated in accordance with in situ adaptive
tabulation, as described earlier, which facilitated
efficient linking. In order to account for the effect
of radial variation of substrate temperature and
the concentration of precursor over the substrate
on the film microstructure, independent interpo-

lation was performed at each macroscopic dis-
cretization node (a full order-model would require
independent kMC at each of these nodes, thereby
significantly increasing the computational require-
ment). Depending upon the structure of the kMC
simulator, the flow of information across the inter-
face of the continuum and the discrete domains
can be unidirectional or bidirectional. For the
current process, numerical simulations established
that inclusion of desorption into the kMC model
had negligible effect on the macroscopic solution
of the multiscale system. Hence, in the reduced-
order process model desorption was not included.
Under this assumption the flow of information was
unidirectional and did not require multiple itera-
tions. The resulting reduced optimization problem
was solved using Hooke-Jeeves search algorithm.
The accuracy of the reduced-order model was val-
idated using the full-order model under various
operating conditions. However, direct comparison
of full and reduced-order formulations was impos-
sible owing to the computational requirements of
the full-order model. Furthermore, once the em-
pirical eigenfunctions and kMC-tables have been
constructed, they can be repeatedly employed in
multiple optimization problems.

5. RESULTS
The optimization problem of Eq.11 was solved
in two steps. Initially, spatial uniformity of the
deposited film was the only optimization objec-
tive (i.e. w1 6= 0, w2 = 0). Subsequently, the
microscopic objective was included into the op-
timization. The target film thickness, Tobj was
5×10−6 m. Figure 2a shows the final film thick-
ness across the wafer surface obtained for the
optimal process operation with macroscopic ob-
jective and multiscale objective (denoted as Op-
timal 1 and Optimal 2, respectively). For com-
parison purposes, the final film thickness-profile
for time-invariant nominal process operation is
also shown. Thickness non-uniformity, defined as√∫

(T − Tobj)2/Tobj , for ABB inlet configuration
was found to be 87.66% and 57.72% for substrate
temperature 1300K and 900K, respectively. The
corresponding numbers were 215% and 188% re-
spectively for BAB inlet configuration. For the
optimal process operation, radial non-uniformity
in the film was successfully reduced to 1.14% and
1.5% for the former and latter cases respectively.
The corresponding inlet switching times where
757s and 703s, and the substrate temperature
profiles before and after switching are shown in
Figure 3a and b, for macroscale and multiscale
objectives, respectively.

Inclusion of the microscopic objective resulted in
the overall increase of substrate temperature and
the spatially averaged surface roughness of the
film decreased from 3.5 (for Optimal 1) to 1.7



(for Optimal 2), shown in Figure 2b. It should
be noted that BAB configuration with Ts =
1300 would result in the film with lowest surface
roughness, however such operation is not optimal
with respect to spatial film-thickness uniformity.
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Birkhäuser. Boston.

Fichthorn, K. A. and W. H. Weinberg (1991).
Theoretical foundations of dynamical Monte
Carlo simulations. J. Chem. Phys. 95, 1090–
1096.

Flekkoy, E. G., Wagner G. and J. Feder (2000).
Hybrid model for combined particle and con-
tinuum dynamics. Europhys. Lett. 52, 271–
276.

Floudas, C. A. and P. M. Pardalos (1992). Recent
advances in global optimization. Princeton
University Press. Princeton, N.J.

Garcia, A. L., J. B. Bell, W. Y. Crutchfield
and B. J. Alder (1999). Adaptive mesh and
algorithm refinement using direct simulation
monte carlo. J. Comp. Phys. 154, 134–155.

Kelley, C. T. and E. W. Sachs (2003). Truncated
newton methods for optimization with inac-
curate functions and gradients. J. Opt. The-
ory Appl. 116, 83–98.

Kevrekidis, I. G., C. W. Gear, J. M. Hy-
man, P. G. Kevrekidis, O. Runborg and
K. Theodoropoulos (2003). Equation-free
multiscale computation: enabling microscopic
simulators to perform system-level tasks.
Comm. Math. Sciences 1, 715–762.

Li, J., D. Liao and S. Yip (1999). Nearly exact so-
lution for coupled continuum/MD fluid sim-
ulation. J. Comp. Mat. Des. 6, 95–102.

Lou, Y. and P. D. Christofides (2003). Estimation
and control of surface roughness in thin film
growth using kinetic Monte-Carlo models.
Chem. Eng. Sci. 58, 3115–3129.

Meyer, C. A., C. A. Floudas and A. Neu-
maier (2002). Global optimization with non-
factorable constraints. Ind. Eng. Chem. Res.
41, 6413–6424.

O’Connell, S. T. and P. A. Thompson (1995).
Molecular dynamic-continuum hybrid com-
putations: A tool for studying complex fluid
flows. Phys. Rev. E 52, 5792–5795.

Pope, S. B. (1997). Computationally efficient im-
plementation of combustion chemistry using
in situ adaptive tabulation. Combust. Theory
Modelling 1, 41–63.

Vlachos, D. G. (1997). Multiscale integra-
tion hybrid algorithms for homogeneous-
heterogeneous reactors. AIChE J. 43, 3031–
3041.


