

AN EFFECTIVE GRAPHICAL APPROACH
TO DEFINE OBJECTIVES AND STRUCTURE OF A CONTROL SYSTEM

Zbigniew Mrozek1

Cracow University of Technology (Politechnika Krakowska)
24 Warszawska Str., PL 31-155 KRAKOW, Poland,

Abstract: Author uses software engineering tools and RUP methodology to manage
design of control for complex systems. UML diagrams are used to describe requirements
and to model the system on high level of abstraction. Graphical approach with RUP and
UML helps to integrate subsystems of different nature and to eliminate main risks of
failure of the control subsystem project. Examples of different UML diagrams are
enclosed. Implementation and detailed design is not described in the paper.
Copyright © 2005 IFAC

Keywords: Requirements analysis, RUP, UML, Modelling, Validation, Computer aided
control system design (CASE).

1 E-mail address: pemrozek@cyf-kr.edu.pl
 Home page: http://www.cyf-kr.edu.pl/~pemrozek

1. INTRODUCTION

The paper is inspired by work of Nayfeh (2004), who
designed an effective controller supporting work of
crane operator. Regardless of crane type (rotary,
overhead, etc.), the economic and safety constraints
require that the payload be transferred in minimum
time and with minimum pendulation while travelling.
These objectives are in conflict, as transferring in
minimum time requires large acceleration which
induces large pendulation.

Crane operation is nonlinear and internally
nonstationar due to purposeful and often change of
payload and (even worst) due to change of
pendulation frequency of payload, when cable length
is changed during hoisting. As a result, linearized
models are not exact. Additionally, during typical
crane operation, the exact end-point coordinates of
payload are not known in advance. Near landing
area, operator looks for assistance of auxiliary staff
member, who will guide him in precise docking of
the payload. It is easy to see that classical approach
to this challenging problem (without knowledge of
end-point position) is not effective.

The main idea of Nayfeh approach is presented later.
His result was almost complete damping of payload
pendulation. He verified his result by computer
simulation, then experiments in his own laboratory
(with 1/24 scale model of 20 ton auxiliary crane ship
known as T-ACS and finalised with industrial tests
done in IHI Japan with 1/10 scale model of 65 ton
container crane.

Nayfeh paper shows importance of client satisfaction
based on deep understanding of real industrial
problems. He gives 25 references in his work. Other
references may be found in papers of Bartolini et al.
(2002) and Szpytko and Smoczek (2004). Useful
description of an embedded system for control and
damping oscillations of flexible arm is described by
Uhl at al. (2001)

This paper shows systematic and general approach to
achievement of client satisfaction using methodology
and tools from area of software engineering:

• RUP (rational unified process)
methodology

• CASE (computer aided system engineering)
tools based on UML (unified modelling
language)

An example of graphical approach to define
objectives and structure of a control system for the
crane operation is presented in this paper.

2. METHODOLOGY AND MOTIVATION

UML models may describe architecture and
behaviour of the original system and its future
control subsystem. UML models have high level of
abstraction and they are independent of physical
nature and details of subsystems.

Designer has possibility to verify his ideas using
UML models on high level of abstraction, without
building physical prototype or even without detailed
simulation model. He may identify and eliminate
(early in design process) main risks of the project
failure, delay or over-budgeting. The RUP approach
forms a good base for future detailed design and
prototyping of the control system. It is also an
important step towards mechatronic approach to
concurrent design and early integration of
subsystems of different nature.

2.1. The design process

A typical design process may be presented as
a sequence of:
– early design phase, which include requirements

elicitation (inception) and conceptual design
(elaboration). Off-line simulation may be used
for testing of the design,

– building (construction) phase, which includes
detailed design, HiL simulation and
prototyping, as well as implementation and
testing,

– deployment (transition) of achieved solution.

2.2. Rational Unified Process (RUP)

Planning, management and monitoring of team work
may be done using Rational Unified Process (2001,
2004) or using any other effective methodology.
RUP is the software engineering methodology based
on best practises, learned from thousands of
successful projects. Some parts of this methodology
are useful in design of complex control systems.

There are four development phases defined in RUP:
inception, elaboration, construction and transition.
There are also well defined conditions (milestones)
to be fulfilled, when new phase of design is started.
Inception corresponds well with requirements
elicitation of early design phase. Elaboration is
focussed on analysis of the problem domain,
establishing future system architecture and
elimination of the main risk of project failure. It
extends conceptual design phase. Construction
phase may include prototyping, detailed design and
implementation. Transition means production and
deployment of the product. Figure 1 shows typical
work effort of different disciplines (modelling,
requirements, analysis, etc.) during each design
phase.

Design is not strictly sequential but iterative, with
many small design steps (micro-steps). After each
step, the affected part of system is tested against
requirements. Very often result of a step or micro-
step is not satisfactory and the designer then returns
back to one of previous steps and repeats part of the
design. Iterative sequence of testing and redesigning
may be repeated many times in a loop (figure 2) –
until satisfactory result is achieved.

Fig. 1. Typical work effort during run of project
 design (Rational Unified Process, 2001).

2.3. The RUP methodology guidelines

In author’s opinion, best practices, spirit and
essentials of RUP (Probasco, 2003) may be
concluded in few guidelines, useful in design of
control systems:

 1. Identify major risks and attack them early, or
they’ll attack you
 2. Model the system visually
 3. Develop iteratively, make quality a way of life,
not an afterthought
 4. Ensure that your deliver value to your customer

Although the designing of control system is much
more general than software engineering, the above
guidelines fit well to designing of control systems.

2.4. Using UML for modelling and inter-team

communication

Inventors of RUP were motivated to create notation
for their unified methodology (Jacobson at all, 1999).
The result was UML, a language for specifying,
visualising, constructing and documenting the
artefacts. From version 1.1, UML language is non-
proprietary and open to all. It is maintained by the
standards organisation: Object Management Group
(OMG, 2004)

Many attempts were done to extend the software
engineering methodology and UML in areas beyond
informatics. McLaughlin and Moore (1998) were
probably the first to describe real time control
process (conveyor belt transport subsystem) using
UML-like class diagram. Now UML diagrams are

used for preparing different models on high level of
abstraction (Mrozek, 2001-2004; Mrozek et al, 2002)

UML notation helps to describe and understand
functions, services and activities of any system,
regardless of its physical nature. This is very useful
during all design phases. Models are essential for
communication between members of
interdisciplinary-nary team of designers.

Designing UML diagrams on computer screen is
supported with CASE software tools. Best-known
packages are Rational Rose (2004), Rhapsody (2004)
and Real-time Studio (2004). Some CASE tools offer
simulation and animation of UML models. This
helps to see behaviour of the system under design.
Simulation is even more realistic if virtual console
with animated, dials and gauges is shown on
computer screen.

Fig. 2. Many different UML diagrams are prepared
 during system design.

As Brugge and Dutoit (1999) points out; it is
sufficient to have a deep knowledge of a small subset
of UML to use it (“You can model 80% of most
problems by using about 20% UML”). There is no
need to use all possible diagrams during design
(figure 2). In author’s opinion, use case diagrams,
scenarios, class diagrams, sequence diagrams and
state diagram are most important. Additional system
architecture diagram (supported by Real-time
Studio, 2004) may show communication links
between parts of system and is very well suited for
detailed design of the computerised control
subsystems. Component and deployment UML
diagrams are less useful in area of control.

3. AN EXAMPLE CONTROL PROBLEM

Control of a crane is investigated. One of successful
strategy of crane control (Nayfeh, 2004) is to kill
existing payload pendulation and to avoid exciting
pendulation due to intentional movement of payload.
It means, the payload movement derivatives (first
and second or second only, all in 3D) should be
always minimized with auxiliary excitation of crane,
when payload reaches its zero-pendulation angle.
And pendulation should be completly killed, when
payload reaches the end point.

4. BEGINNING EARLY DESIGN PHASE

Design starts when need of new or improved solution
came into sight. Next step is its transformation into
specification of requirements, followed by
conceptual design (figure 3).

4.1. Elicitation of requirements

During elicitation of requirements, borders and
external behaviour of the system are defined and
criteria of consumer satisfaction are set. This may be
influenced with development strategy of a company.

conceptual
design

development strategy

requirements
elicitation

feasibility
studymarketing

modification,
off-line
simulation
and testing

product
& concept
analysis

idea

Fig. 3. Early design phase: elicitation of require-
 ments and conceptual design (named in RUP as
 inception an elaboration).

4.2. Graphical representation of requirements on

Use Case Diagram.

The goal of elicitation of requirements is to describe
what the system should do and (which seems to be
equally important) to agree with customer on this
description. This is an important job, as original
textual problem description may be incomplete or
some requirements may conflict with others. Even
meaning of the same phrase may be different to some
members of design team. Blaming the client for a
defective problem statement is not acceptable, as
consumer satisfaction is one of main objectives of
design.

wind

LoadChange

cableLenChange

shipMotions

DisturbanceOperator
ShipPosition

MoveCrane

NatFreqChangeAuxStaff

MoveLoad

GetStateOfLoad

Fig. 4. Use case diagram for auxiliary crane ship.

Use case diagram (figure 4) shows actors, use cases
and interactions between them. It describes how the
system may be used by user and how the system
interacts with other external actors.

Actor is a thing outside the actual system (human
user, another system or external signal, connected to
sensor or interface), which interacts with the actual
system. Actor is depicted as a simple icon of a man.

Use cases are system boundaries identifying what the
system should do. They capture subsystem
functionality as seen from the point of view of end
user or domain expert and help to understand how
the system should work. Use case icon is an ellipse.
Actors and use cases set the border between the
system under development and its external
environment It.

4.3. Describing actor and system interactions in

scenario

Scenario is a textual description or set of messages in
natural language, describing the sequence of actor
and system interactions. It describes details of use
case functionality. There are at least three actors in
this scenario: Crane operator, auxiliary staff member
and unknown external disturbances.

Crane operator has to move the payload to
desired location. He starts with hoisting the
payload about 3 m up and then moves it
horizontally in desired direction. To save time,
horizontal and vertical movement may be
performed concurrently. Any pendulation of the
payload should be damped. Near landing area
operator looks for assistance of auxiliary staff
member, who will guide him in precise docking
of the payload.

There are at least three actors in this scenario: Crane
operator, auxiliary staff member and unknown
external disturbances (compare fig. 4)
.

5. CONCEPTUAL DESIGN

Conceptual design (elaboration in RUP terminology)
is the most crucial part of design process. During
conceptual design, feasibility study, estimation of
needed resources and business plan for development
(including implementation costs) is estimated. The
objective is to establish a sound architectural
foundation, to develop the project plan and to
eliminate highest risk elements of the project.
Preliminary architecture is refined many times, as
new UML diagrams are prepared and then iteratively
analysed, modified and tested.

5.1. Deciding on architecture of the system

 At the beginning, one should analyse use cases and
scenarios to identify objects, their responsibilities,
activities and parameters. Similar objects are
generalised into classes. This leads to preliminary
version of class diagram. Later objects and classes
are used to build other diagrams. An internal
structure of the system is presented on class diagram.
It shows classes and relationships that exist between
them.

An example of class diagram for crane control
subsystem is presented on figure 5. Name of class or
object is given in upper compartment of rectangular
icon, e.g. “Sensors”. Attributes (variables and

parameters) are kept in the middle compartment.
Operations (services and responsibilities of a class)
are given in bottom compartment. Relations are
shown using different lines, with or without arrows.

set EndPoint
in the fly Actuators

RealCraneObj
Attributes

Operations()

Sensors

D/A

A/D

OscilationKiller

KillOsc()
KillAll()

UserInterface

FollowOpCommand()
ShowState()

CraneControl
Attributes

LiftUpDown()
MoveHorizont()

CraneModel

SetParameters()
GetParameters()

Fig. 5. Static structure of crane control subsystem is
 presented on class diagram

It is not a good idea to design complete diagrams
sequentially. Instead, an iterative and concurrent
approach is advised. Changes in object hierarchy, in
naming, operations and attributes are inevitable,
when other diagrams are under design. This is
especially true when sequence or state diagram is
prepared. If a good CASE tool is used, the same
classes on different diagrams are synchronized and
updated if class name, attribute, type or operation is
intentionally changed on any other diagram. New
classes, operations and attributes are added to
respective class diagram – if needed for actually
designed or any other diagram. Other (if not used}
are considered for deletion. All changes are
performed easily on computer screen; in framework
of chosen CASE tool (e.g. Rational Rose).

5.2. Verification of requirements and system

architecture

Building UML diagrams automatically verifies
specification of requirements and scenarios against
omissions and inconsistencies Scenario is verified
with sequence diagram, which shows what objects
does to implement this scenario. Sequence diagram is
a graphical model of the scenario (figure 6).

 : Operator : AuxStaff :
UserInterface

 :
CraneControl

 :
OscilationKiller

1: FollowOpCommand()
2: LiftUpDown()

4: MoveHorizont()

6: ShowState()7: Show End-Point

3: KillAll()

8: FollowOpCommand()

11: LiftUpDown()

9: MoveHorizont()
10: KillAll()

12: KillOsc()
14: Done

13: ShowState()

5: KillAll()

 Fig. 6. Sequence diagram for crane operation

Actors and objects are shown on top of sequence
diagram. Time flows down the vertical time lines.
Object may send messages (horizontal line with an
arrow) to ask needed services from another object
(e.g. “UserInterface” may ask “CraneControl” to
LiftUpDown(+3)” the payload), as described in
scenario. Diagram may be annotated with text.
Timing marks may be added to show exact time
constrains.

Collaboration diagram provides essentially the same
information as sequence diagram and is not
described here.

6. VERIFYING RESPONSIBILITY OF OBJECTS

AND SUBSYSTEMS

Statechart diagram of Harel (1987) is used to
describe and verify behaviour of the system or its
part (subsystem, use case, object). Comparing with
sequence diagram, the statechart shows all states the
system or its part may go through during its lifecycle,
rather than states described by single scenario.

Each state represents a named condition during the
life of an object (osc & hyperbolic on fig. 7). Object
stays in actual state until it is fired by some event or
when given condition (that must be fulfilled before
the transition) will occur. Lines with arrow show
possible transitions (change of state). A black ball
shows a starting state. The end state (if exists) is
shown as black ball in a circle.

Fig. 7 State diagram for sliding mode controller
 (Mrozek and Tarasiewicz, 2001)

Statechart diagram presented on figure 7 models
behaviour of the sliding mode controller, useful in
hardly nonlinear and non-stationary environment
(Mrozek and Tarasiewicz, 2001). It was prepared
with Stateflow, in the MATLAB/Simulink software
environment (Mrozek B, Mrozek Z. 2004). An
important advantage this environment is possibility
of simulation (of-line, on-line real-time, HiL:
hardware in the loop) and prototyping. Later,
simulated virtual model may be automatically
compiled with MATLAB/RTW/StateflowCoder and
loaded into FPGA or other target hardware.

If concurrent activities are needed, one may use an
activity diagram. It is well suited to describe set of
sequential and parallel actions as preparing the
welding gun to work in MIG/MAG welding mode
(Mrozek, 2003).

7. CONCLUSIONS

RUP methodology and UML diagrams were invented
for use in software engineering, but they may be
efficiently used in design of any complex systems.
Some of RUP best practices have already been used
beyond this area, without knowledge of RUP
methodology, e.g. incremental design is used in
prototyping, see Uhl at all, (2001).

UML model describe future system architecture and
behaviour on high level of abstraction, without need
to decide on physical nature of subsystems and its
details. Preparation of diagrams automatically
verifies specification of requirements and scenarios
against omissions and inconsistencies. This helps to
verify idea of future system, on very early phase of
design. Ineffective architecture, wrong assumptions
and errors in UML diagrams are also easily found.
This helps to identify and eliminate (early in design
process) main risks of project failure and improves
future system quality.

The main result of early design phase is to ensure
that the architecture, requirements and plans for
detailed design are stable enough and that main risk
of the project failure is sufficiently mitigated. This is
important conclusion, as time delay and cost of
modification are much higher, if corrections are
made later, during detailed design, implementation or
(it is the worst case) during final design tests.

Using commercially available CASE packages, UML
may greatly improve productivity of design team by
cutting down development time and improving final
product quality (in accordance with ISO 9000
standards).

8. ACKNOWLEDGEMENTS:

Author wants to express his gratitude to Rational
Software Corporation (USA) and The MathWorks
Inc (USA) for free evaluation licenses for software
presented in this paper.

More systematic description of RUP, UML and
Stateflow may be found in cited literature

REFERENCES

Bartolini G., Pisano A., Usai E. (2002) Second-order

sliding-mode control of container cranes
Automatica 38, pp 1783 – 1790.

Bruegge B, Dutoit A, (1999). Object-Oriented
Software Engineering: Conquering Complex
and Changing Systems, Prentice-Hall.

Harel D. (1987). Statecharts: A visual formalism for
complex systems, Sci of Comp. Programming, ,
No 8, pp 231-274.

Jacobson I., Booch G, and Rumbaug (1999). The
Unified Software Development Process.
Addison-Wesley.

McLaughlin J. and Moore A (1998) Real-Time
Extensions to UML, Timing, concurrency, and
hardware interfaces, Dr. Dobb's Journal
December

Mrozek Z. (2001). UML as integration tool for
design of the mechatronic system, In: Second
Workshop on Robot Motion and Control,
(Kozlowski K, Galicki M, Tchoń K (Ed)), pp
189-194, Bukowy Dworek, Poland.

Mrozek Z, Tarasiewicz S (2001) Attempting sliding
mode controller to mobile robot arc welding
process, Proc. of III Krajowa Konf. Metody i
Systemy Komputerowe (Tadeusiewicz R., Ligęza
A., Szymkat M. (Ed)), pp:369-373, Kraków.

Mrozek Z. (2002a). Methodology of using UML in
mechatronic design [in: Polish], Pomiary
Automatyka Kontrola. No 1. pp.25-28,

Mrozek Z. (2002b). Computer aided design of
mechatronic systems [in: Polish], Zeszyty
Naukowe Politechniki Krakowskiej, seria
Inżynieria Elektryczna i Komputerowa, no 1,
Kraków.

Mrozek Z, Tao Wang, Minrui Fei. (2002) UML
supported design of mechatronic system, Proc of
Asian Simulation Conference/5-th Int.
Conference on System Simulation and Scientific
Computing, Shanghai, China, Nov. 3-6,.

Mrozek Z. (2003). Computer aided design of
mechatronic systems, International Journal of
Applied Mathematics and Computer Science, vol
13 No 2, pp 255-267

Mrozek B, Mrozek Z. (2004) MATLAB i Simulink,
poradnik użytkownika Helion, Gliwice.

Mrozek Z (2004). Importance of early design phase
in mechatronic design. In: Proceedings of 10th
IEEE International Conference on Methods and
Models in Automation and Robotics (Domek S.,
Kaszynski R (Ed)), vol 1 pp 17-28,
Miedzyzdroje, Poland.………..

Nayfeh A.H. (2004). A Smart Controller for Cranes.
In: Proceedings of 10th IEEE International
Conference on Methods and Models in
Automation and Robotics (Domek S., Kaszynski
R (Ed)), vol 1 pp 17-28, Miedzyzdroje,
Poland.………..

OMG (2004) Unified Modeling Language,
Homepage http://www.omg.org/uml

Probasco L.(2000) The Ten Essentials off RUP, the
essence off an effective development process,
TP- 177 9/00, Rational Software Corporation,.

Rational Rose (2004) Rational Rose RT Homepage:
http://www.rational.com/products/rose/
http://www-306.ibm.com/software/rational/

Rational Unified Process (2001). Best Practices for
Software Development Teams, Rational Software
White Paper, TP026B, Rev 11/01,

Rational Unified Process (2004). Homepage
http://www.rational.com/products/rup/
http://www-306.ibm.com/software/rational/

Real-time Studio (2004) ARTiSAN Software Tools,
Inc. . Homepage: http://www.artisansw.com/,

Rhapsody (2004). i-Logic, http://www.ilogix.com/
Szpytko J. and Smoczek J. (2004), Fuzzy Logic

Control Improve Transport Devices Quality, In:
Proceedings of 10th IEEE International
Conference on Methods and Models in
Automation and Robotics (Domek S., Kaszynski
R (Ed)), vol 2 pp 1391-1396, Miedzyzdroje,
Poland.

Uhl T, Mrozek Z, Petko M (2001) Rapid control
prototyping for flexible arm, Mechatronic
Systems (Isermann R.(ed.)) , vol. 2 , pp. 489-
494, Elsevier Sci, Amsterdam,

