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Abstract: An adaptive control algorithm for rejecting narrow-band noise is proposed in 
this paper. This algorithm is developed under the framework of robust stabilization and 
the internal model principle. The internal model which contains the noise dynamic is 
updated using the estimated disturbance signal. The parameter adaptation is constrained 
to meet the condition of robust stabilization when the parameters are converged. 
Simulation examples are given to show the effectiveness of the control law under 
disturbance with unknown frequencies. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Internal Model Principle (IMP) has been used for 
controller design to track periodic trajectories 
(Tomizuka et al, 1989; Kempf et al, 1993) or reject 
narrow-band noises (Hu, 1996). For applications 
such as the active noise cancellation, IMP based 
controller has the advantage that the information of 
the noise source signal is not required, as compared 
with feedforward-type algorithms such as the Filter-
X (Elliot and Nelson, 1993; Kuo and Morgan, 1996; 
Bjarnason, 1995). Therefore, when a coherent noise 
source is difficult to measure or the cost of sensor 
installation is high, IMP based controller becomes a 
good candidate for noise rejection. 
 
The IMP based controller works well if the 
disturbance frequencies (or the fundamental period 
of a harmonic noise) are known. For applications like 
disk drive tracking (Moon et al, 1998), the condition 
is satisfied when the servo controller is synchronized 
with the disk rotation. In active noise cancellation 
(ANC), however, it may not be easy to locate these 
frequencies precisely. For example, narrow-band 
noise caused by rotational machinery may drift 
around some nominal frequencies due to small 
variations of the machine’s speed. Earlier research 
efforts to identify the frequencies and adjust the 

control law on-line were reported (Hu, 1992) but 
only limited to harmonic cases. For digital 
implementation, if the fundamental period of the 
harmonic noise is not an integer-multiple of the 
sampling period, one also has to consider using 
techniques such as the fractional delay filter for the 
internal model (Hu and Yu, 2001). Another approach 
(Elliot and Goodwin. 1984; Palaniswami and 
Goodwin, 1987; Feng and Palaniswami 1992;  
Palaniswami, 1993) is to consider the non-minimal 
representation of the plant which includes the 
disturbance model. The disturbance model is then 
extracted (or factored) from the identified plant 
parameters. An indirect adaptive controller is 
implemented based on the pole-placement algorithm. 
Although it is not required to know the plant’s 
parameters, extracting the disturbance model from 
the composite estimated polynomial may not be easy 
(Palaniswami 1992), especially when the number of 
disturbance frequencies is high. There were other 
adaptive IMP control schemes (Datta and Lei, 1998, 
1999; Silva and Datta, 1999; Muramatsu and 
Watanabe, 2003; Watanabe and Muramatsu, 2003)  
but were aimed at identification of plants instead of 
the disturbance model. 
In this paper, an adaptive internal model control 
algorithm is investigated under the framework of 
robust stabilization. The plant is assumed stable and 



     

a nominal model is known. The output disturbance is 
narrow-band whose frequencies are unknown or 
changing slowly. The control objective is to reject 
the disturbance without affecting the close loop 
stability under the model uncertainty. Simulation 
results are shown to demonstrate the effectiveness of 
the control law.. 
 
 

2. FEEDBACK CONTROLLER BASED ON 
OUTPUT DISTURBANCE OBSERVATION 

 
A feedback controller which utilizes the observation 
of the output disturbance can be shown as Figure 1.1. 
The idea is simple: if the estimation of the plant 
dynamic is accurate enough and the controller K(z−1) 
provides a proper inversion of the plant within the 
bandwidth of the disturbance, the influence of the 
disturbance to the output can be minimized. Other 
than the uncertainty of the plant dynamic which may 
degrade the accuracy of disturbance observation, 
non-minimal phase zeros of the nominal plant also 
limit the performance of rejection. 
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Figure 2.1 Feedback control system based on output 

disturbance observation ( )(ˆ 1−zG  represents the 
nominal plant) 

 
For stable plants, Figure 2.1 can be viewed as an 
Youla Parameterization where a stable controller 
K(z−1) guarantees the closed loop stablility. If the 
plant is accurately identified (i.e., )(ˆ)( 11 −− = zGzG ), 
the disturbance to the output satisfies the following 
equation: 
 )()()()()( 11111 −−−−− += zDzKzGzDzY  (2.1) 
Using FIR filter as the structure of K(z−1), Eq.(2.1) 
becomes a standard Filter-X adaptive control setting 
if a signal correlated to d(k) can be obtained, i.e.,  
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Normally, d(k) is replaced by the observed 
disturbance )(ˆ kd  (Figure 2.1).  
 
This method has found to be quite useful in rejecting 
narrow-band noises (Rafaely and Elliott, 1996). 
However, under the plant uncertainty, the H∞ norm 
of K(z−1) must be constrained in order to guarantee 

robustness. Secondly, when the disturbance is rich in 
frequency, and the plant is non-minimal phase, the 
length of the FIR filter has to be long enough. This 
would result in slow convergence. Consider an 
alternative representation of the control system in 
Figure 1 (see Figure 2.2 where G(z−1) is the nominal 
plant hereafter). 
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Figure 2.2 A unity feedback configuration of the 
control system based on output disturbance 

observation (∆G: plant uncertainty) 
 
Suppose the disturbance model is Wd(z−1). To design 
Q(z−1) which satisfies the robustness and disturbance 
rejection, we can solve the following problem: 
 

dQ
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∞∈RH
 subject to 1<∆GQ  

Another way to design the controller is to solve K(z−1) 
directly using the H∞ controller synthesis methods. 
Since all stablizing controller can be represented as 
shown in Figure 2.2 if the plant is stable (Doyle and 
Francis, 1992), we can obtain Q(z−1) as: 
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In other words, we can obtain a “nominal” controller 
based on the undertstanding of the plant and the 
disturbance. To enhance the performance using 
adaptive methods, an additional adaptive FIR filter 
can be added to the controller as shown in Figure 2.3. 
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Figure 2.3 Output disturbance rejection with a nomial 

controller Q(z−1) and an adaptive FIR filter Φ(z−1). 
(PAA: parameter adaptation algorithm) 

 
From Figure 2.3, if Q(z−1) is computed to satisfy the 
robustness constraint, the constraint for Φ(z−1) to 
maintain robusness at steady state (i.e., when 
parameters converge) is, 
 1)( 1 <Φ −z  (2.4) 

It is obvious that adding the nominal controller Q(z−1) 
provides a normalization across the frequency for the 
constraint in parameter adaptation. 
 
 

3. CONSTRAINED ADAPTIVE CONTROL 
ALGORITHM 

 
When the FIR filter Φ(z−1) is adjusted for each 
sampling period, the output of the system in Figure 
2.3 can be derived as, 
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  (3.1) 
where )(ˆ)()(ˆ 1

1 kdqQkd −=  and z(k) represents the 
uncertainty signal. Denote the predicted disturbance 
signal as, 
 )()()()()( 1 kzkdkykyk +=−=ζ  (3.2) 
Our goal is to adjust ),( 1−Φ zk  so that y1(k) matches 
d(k). In other words, given a solution of ),( 1−Φ zk  
that satisfies the goal (i.e., when parameters 
converge), the dynamics of y1(k) shall be able to 
represent d(k). Let the filter ),( 1−Φ zk  be 
 L
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If [ ]dddd DCBA ,,,  are the state space matrices of the 
nominal plant, Eq.(3.1) and (3.2) can be represented 
in state space as, 
 )()()1( kkFk ηη =+  (3.3a) 
 )()()()( kzkkHk += ηζ  (3.3b) 
where 
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 [ ])(ˆ)1(ˆ)(ˆ)( 11 Lkdkdkdk L −−= Lφ  (3.3g) 
x(k) is the state vector of the plant and IL is an L×L 
unity matrix. 
 
The technique of H∞ suboptimal causal filtering 
(Sayyarrodsari et al, 1998) can be applied to the 
formulation above. We wish to find an optimal 
estimator such that, 
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where )|(ˆ kkζ  is the posteriori prediction of )(kζ , 

0η  the initial guess of the state vector and ∏ a 
positive definite matrix. Eq.(3.4) is valid as long as 
the the uncertainty signal z(k) is bounded. To show 
this, it is necessary that the H∞ norm of the time 
varying filter ),( 1−Φ zk  is less than 1 (Eq.(2.4)). A 
sufficient condition to guarantee it is, 
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Let Γ be the subspace of θ(k) (Eq.(3.3e)) such that 
1)()( =kkT θθ . Combining the constraint of Eq.(3.5) 

and the objective function, we can derive the 
parameter update law as (Sayyarrodsari et al, 1998), 
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 TkFkPkFkP )()()()1( =+ , P(0) = Π (3.6f) 
where Pr{.} denotes the projection onto the space Γ.  
Remark 1: The value of ζ(k) is computed by 

)()()( 1 kykyk −=ζ  where y1(k) can be obtained 
by running a simulated nominal plant as 

)()()( 1
1 kuqGky −= . But this is impossible if the 

nominal plant is proper but not strictly proper, i.e., 
0≠dD .  

 
The following list summarizes the procedure: 
At every k-th sampling instant, 
Step 1: compute the nominal plant output 

)()()( 1
1 kuqGky −=  and from the measurement  of 

y(k) compute )()()( 1 kykyk −=ζ  
Step 2: compute the estimated disturbance 

)()()(ˆ kkykd ζ−= . 
Step 3: compute )(ˆ)()(ˆ 1

1 kdqQkd −=  and form the 
vector )(kφ . 

Step 4: compute the parameter and state update 
)1(ˆ +kη  from Eq.(3.6a) – (3.6f)  

Step 5: compute the control )()1(ˆ)( kkku T φθ +−= . 
 
 

4. DESIGN EXAMPLE AND SIMULATION 
 
To illustrate the adaptive control algorithm, we 
consider the plant of an active controlled headset 
shown. The nominal plant represents the case when 
the headset is in a normal position which covers the 
full ear and the actual plant is when it covers ear 
partially. Table 4.1 shows the corresponding 
parameters. 
 

Actual plant Nominal plant 
Poles Zeros Poles Zeros 

0.96 
0.18 ± 0.80j 
0.57 ± .50j 

-1.58 
1.02 
0.37 ± 0.56j 

0.96 
0.16 ± 0.78j 
0.58 ± 0.51j 

-1.55  
1.01 
0.41 ± 0.56j 

Gain = -0.60441 Gain = -0.65292 
Table 4.1 Poles, zeros and gain of the nominal and 

actual plant 
 
 
4.1 Design of the Central Controller 
 
The procedure described in (Stoorvogel, 1992) is 
followed to design the central controller K(z−1) of 
Figure 2.2 and the corresponding Q(z−1) is computed. 
Figure 4.1 shows the structure of the controller 
design setting where w1 and w2 are uncertainty inputs, 
z the uncertainty output, u the input and y the 
measured output. 
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Figure 4.1 The robustness control setting to design 
the central controller (G(z−1): the nominal plant; 

W(z−1): the weighting function) 
 
Denote the uncertainty signal z as zw 11 ∆=  and 

zw 22 ∆= , the I/O relationship is, 
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The plant uncertainty is defined as ∆G as shown in 
Figure 2.2. Therefore, we have, 
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As a result, by properly choosing the weighting 
function W(z−1) such that 
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we can scale the plant uncertainty to be less than 1 to 
design the robust controller as well as give the unity 
constraint of the adaptive FIR filter (Eq.(2.4)). The 
controller K(z−1) can be solved by using Matlab and 
the controller is transformed to the internal model-
based control structure by Eq.(2.3). 
 
 
4.2 Simulation results 
 
Figure 4.2 shows the simulation result when the 
noise is a single tone at 600 Hz. The length of the 
FIR filter is 6. 

 
Figure 4.2 Simulation result of rejecting a tonal noise 

at 600 Hz 
 
To see the rejection capability when the noise’s 
frequency is changing, the following noise is applied. 
 )/)(2sin()( 1 sfkkfkd π=  
where )/2sin(10600)(1 sm fkfkf π+=  and fm = 3. It 
means the frequency swings between 590 and 610 
Hz in a speed of 3 Hz. Figure 4.3 shows that the 
controller is able to adapt the changes. For 

comparison, another simulation is performed using 
the feedforward-type of algorithm where the 
observed noise )(ˆ kd  (Figure 2.3) is replaced by a 
600 Hz tone. Figure 4.4 shows that the modulation of 
the frequency remains at the output and has the 
tendency of growing. The length of the FIR filter in 
both cases is 60.. 
 

 
Figure 4.3 Simulation result for single tone noise 

with a slight frequency modulation 
 

 
Figure 4.4 Simulation result for the feedforward type 
of algorithm without considering the change of noise 

frequency 
Lastly, a noise data measured from a V8 internal 
combustion (IC) engine at idle speed is used for the 
disturbance. IC engine noise contains many narrow-
band features due to the periodic nature of its 
operation. Figure 4.5 shows the noise and the noise 
reduction after applying the controller. The reduction 
is more clearly seen from the spectrum in Figure 4.6. 
The narrow-band noises at lower frequencies are 
reduced at the expense of slight increases at higher 
frequencies. 
 

 
Figure 4.5 the simulation result when the disturbance 
is an engine noise (dot: original noise; solid: reduced 

noise) 
 



     

 
Figure 4.6 the spectrum of the noise and noise 

reduction (dot: original noise; solid: reduced noise) 
 

 
5. CONCLUSION 

 
An adaptive internal model-based control algorithm 
is presented in this paper. This algorithm utilizes the 
robustness control technique to scale the plant 
uncertainty and constrains the adaptive filter to meet 
the robustness requirement. An observer-based 
adaptive law with the H∞ optimal filtering criterion is 
proposed. Simulation shows that this algorithm is 
able to reject narrow-band disturbances with 
unknown or slow-varying frequencies. 
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