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Abstract: This paper focuses on the control of nonlinear control affine systems that
are subject to hard state constraints. The control concept is based on the invariance
control approach and is designed as an extension of an ordinary feedback controller.
Compliance with the state constraints is achieved by a switching controller that
makes a constraint admissible state space region positive invariant. The control
method is demonstrated by numerical simulation of an example system.
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1. INTRODUCTION

A controller design method for nonlinear control
affine systems that are subject to a single state
constraint is presented in (Wolff and Buss, 2004).
In this paper those results are generalized to-
wards consideration of multiple constraints of the
regarded class. The control concept is based on
the invariance control approach (Mareczek et al.,
2001; Wollherr et al., 2001) and allows to con-
strain the system to a state-space region, which is
constructed from the constraints.

Various control methods for constrained linear
systems can be found including override-control
(Glattfelder and Schaufelberger, 2003), the theory
of constraint admissible sets (Gilbert and Tan,
1991) and Model Predictive Control (Bemporad et

al., 2002). The latter can also be applied to nonlin-
ear systems, but with limitations imposed by the
numerical complexity of the on-line optimization.
The reference governor approach presented in (Be-
mporad, 1998; Gilbert and Kolmanovsky, 2001)
also considers nonlinear systems but depends on
extensive numerical simulation, as the state space
is probed for constraint admissibility.

This paper is organized as follows: section 1 gives
an introduction to the problem and summarizes
previous results for a single constraint. Multiple
constraints are considered in section 2 and in
section 3 the control design method is applied to
an example system.

1.1 System and Constraint Definition

In the following, nonlinear control affine systems

ẋ = f (x ) + g(x ) u, x (t = 0) = x 0 (1)

are regarded with x ∈ R
n , u ∈ R and smooth

vector fields f , g : R
n → R

n.

Let the state constraints be given by a set of
smooth output functions hi(x ) : R

n → R

yi = hi(x ) ≤ 0 1 ≤ i ≤ m (2)

with globally well defined relative degree ri and
for which 0 is a regular value.

A point x ∈ R
n in state space is called constraint

admissible, if the constraint condition (2) is satis-
fied for all m constraints.
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1.2 Control Concept

The proposed controller is designed as an exten-
sion of an ordinary feedback controller, which is
further called nominal controller. The nominal
controller can be designed by ordinary controller
design techniques to achieve the desired control
goals while the state constraints are neglected. It
is assumed that the nominal controller stabilizes
system (1) with respect to an equilibrium point or
a trajectory and that a suitable Lyapunov func-
tion is known.

To achieve compliance with the constraints, the
invariance controller modifies the nominal control
signal, such that a pointwise constraint admissible
state space region becomes positive invariant. A
state space region is called positive (negative)
invariant with respect to a dynamic system, if
trajectories originating from the region remain
therein with increasing (decreasing) time. All fol-
lowing statements concerning invariance proper-
ties will implicitly refer to positive invariance. The
invariance controller enforces compliance with the
constraints by making a state space region invari-
ant that is also pointwise constraint admissible.
The structure of the resulting control loop (see
Fig. 1) has similarities with the overrides that are
common in the anti-windup literature (Glattfelder
and Schaufelberger, 2003) and the reference gov-
ernor approach (Gilbert and Kolmanovsky, 2001),
where the reference signal is modified to avoid
constraint violation.

1.3 A Single Constraint

In this subsection, the results for a single con-
straint from Wolff and Buss (2004) are summa-
rized. The index i indicating the specific con-
straint is omitted for the sake of clarity.

Higher order time derivatives are denoted by

y(j) =

[
d

dt

]j

y

and the Lie derivative of the function h(x ) along
the vector field f by Lf h(x )

Lf h(x ) = L1
f h(x ) = ∂h

∂x
f (x )

Lj
f h(x ) = Lf L

j−1
f h(x ).

An analysis of the output dynamics, which is
based on the current state x and an assumption
on the control u, allows to derive an upper bound
of the future output trajectory. The use of τ as
time variable expresses the predictive character of
the procedure.

The first r time derivatives of y are given by

y(j) = Lj
f h(x ) 0 < j < r

y(r) = Lr

f h(x ) + Lg L
r−1
f h(x ) u.

Under the assumption, that y (r) is upper bounded
by a constant γ

∀τ>0 y(r)(τ) ≤ γ,

the output trajectory y(τ) is upper bounded by a
polynomial p(τ, x , γ) of order r

∀τ≥0 y(τ) ≤ p(τ, x , γ)

p(τ, x , γ) :=
τ r

r !
γ +

r−1∑

i=0

τ i

i!
y(i)(x ).

The design parameter γ is chosen according to

γ = 0 for r = 1

γ < 0 for r > 1,

to ensure that p(τ, x , γ) has a maximum for τ ≥ 0,
which is further denoted by Φ(x )

Φ(x ) := max
τ≥0

[p(τ, x , γ)] .

The function Φ : R
n → R is continuous but not

necessarily differentiable and can be analytically
determined for low relative degrees:

r =1 : Φ(x ) = y

r =2 : Φ(x ) =







y ẏ ≤ 0

−
1

2γ
ẏ2 + y ẏ > 0.

(3)

A state space region G with boundary ∂G is
implicitly defined by

G = {x |Φ(x ) ≤ 0}

∂G = {x |Φ(x ) = 0} ,
(4)

which is pointwise constraint admissible with re-
spect to the regarded single constraint. As Φ(x ) is
continuous but not necessarily differentiable, the
standard invariance condition

d

dt
Φ(x ) ≤ 0 x ∈ ∂G

is inapplicable. The following generalized invari-
ance condition is used instead.

Definition 1. The function Φ(x ) is locally de-
creasing with respect to an autonomous dynamic
system in x 0, if

∃ε>0 ∀t∈[0;ε) Φ(x 0) ≥ Φ(x (t)).
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Proposition 1. A region G as defined by (4) is
invariant with respect to a dynamic system, if the
function Φ(x ) is continuous and locally decreasing
with respect to the system on the boundary ∂G.

A main result of (Wolff and Buss, 2004) is that the
function Φ(x ) is locally decreasing in x , if either
of the following conditions is satisfied:

y(r)(x , u) ≤ γ (5)

∀0<j<r y(j)(x ) < 0. (6)

Condition (5) can be satisfied by increasing or
decreasing u respectively as Lg L

r−1
f h(x ) 6= 0

from the definition of relative degree.

Thus the region G can be made invariant with
respect to the closed control loop by choosing the
control u, such that for all x ∈ ∂G at least one of
the conditions (5) and (6) is satisfied.

2. MULTIPLE CONSTRAINTS

In the following, the index i always refers to one
or more of the m state constraints or output
functions respectively.

For each constraint (2) a function Φi(x ) is deter-
mined like described in the previous subsection.

Each function Φi(x ) then defines a region Gi

Gi = {x |Φi(x ) ≤ 0}

that is pointwise constraint admissible with re-
spect to its corresponding constraint.

The region G defined by the function Φ(x )

Φ(x ) = max
i

[Φi(x )]

G = {x |Φ(x ) ≤ 0}

is the intersection of the regions Gi and is therefore
pointwise constraint admissible with respect to
all m constraints. It is further called invariance
region.

The boundary ∂G of the region G consists of
subsets of the boundaries ∂Gi of the regions Gi.
The relation of the regions Gi and G is illustrated
in Fig. 2. The sign of the corresponding function
Φi(x ) is depicted beside the region boundaries.

2.1 Invariance

In the following a sufficient condition for invari-
ance of the region G is derived from proposition 1
and the conditions (5) and (6).

According to proposition 1 the composite region
G is invariant, if Φ(x ) is locally decreasing on the
boundary ∂G. Let the set I (x ) ⊂ N

I (x ) = {i |Φi(x ) = Φ(x )}

indicate which functions Φi(x ) are maximal in x .

Proposition 2. The function Φ(x )

Φ(x ) = max
i

[Φi(x )]

is locally decreasing in x 0, if the functions Φi(x )
are locally decreasing in x 0 for all i ∈ I (x 0)

I (x ) = {i |Φi(x ) = Φ(x )} .

Proof of Proposition 2:
In this proof, use of the indices j and k implies

∀j /∈I (x0) ∀k∈I (x0) .

As the functions Φk(x ) are locally decreasing in
x 0, there exists ε1 > 0

∀t∈[0;ε1) Φk(x 0) ≥ Φk(x (t)), (7)

and with

Φk(x 0) > Φj(x 0),

there exists ε2 with 0 < ε2 < ε1, such that

∀t∈[0;ε2) Φk(x (t)) > Φj(x (t)). (8)

Combination of (7) and (8) yields

∀t∈[0;ε2) Φ(x 0) = Φk(x 0) from def. of I (x )

≥ Φk(x (t)) from (7)

> Φj(x (t)). from (8)

This means that for all 1 ≤ i ≤ m

∀t∈[0;ε2) Φ(x 0) ≥ Φi(x (t)).

Φ(x ) is therefore locally decreasing in x 0

∀t∈[0;ε2) Φ(x 0) ≥ max
i

[Φi(x (t))] = Φ(x (t)). 2

Sufficient conditions for Φi(x ) to be locally de-
creasing are given by (5) and (6), from which (6)
is independent of the control input.

The term Lg L
ri−1
f hi(x ) is either positive or neg-

ative for each i and all x , since f , g and hi are
smooth and Lg L

ri−1

f h(x ) 6= 0 from the definition
of relative degree.

Condition (5) can be written as

y
(ri)
i (x , u) = Lri

f hi(x ) + Lg L
ri−1
f hi(x ) u ≤ γi

and, depending on the sign of the expression
Lg L

ri−1
f hi(x ), represents either an upper or lower

bound condition for the control input u.



Let the sets I 0(x ) and I±(x ) be a decomposition
of I (x ) with

I 0(x ) =
{

i
∣
∣
∣ y

(j)
i (x ) < 0, 0 < j < ri

}

∩ I (x )

I±(x ) = I (x ) \ I 0(x )

and let I +(x ) and I−(x ) be a decomposition of
I±(x ) with

I +(x ) =
{

i
∣
∣
∣Lg L

ri−1
f hi(x ) > 0

}

∩ I±(x )

I−(x ) =
{

i
∣
∣
∣Lg L

ri−1
f hi(x ) < 0

}

∩ I±(x )

With the introduced notations, a sufficient condi-
tion for the function Φ(x ) to be is locally decreas-
ing in x is given by

u∗(x ) ≤ u ≤ u∗(x ) (9)

u∗(x ) : = max
i∈I−(x)

{u∗
i (x ),−∞}

u∗(x ) : = min
i∈I+(x)

{u∗
i (x ), +∞}

u∗
i (x ) : =

γi−L
ri

f
hi(x)

Lg L
ri−1

f
hi(x)

.

For all i ∈ I 0(x ) the functions Φi(x ) are locally
decreasing in x because of (6). For all i ∈ I±(x )
the functions Φi(x ) are locally decreasing in x

because of (5).

2.2 Stability

As the region G is not necessarily bounded, in-
variance of G is not sufficient for stability in the
sense of boundedness. In the following, a sufficient
condition for existence of a Lyapunov function for
the system with switching control is given.

It is assumed that the nominal controller stabilizes
system (1) with respect to an equilibrium xd or
a trajectory ẋ (t) and that a suitable Lyapunov
functionV (t , x ) : R×R

n → R is available (Sastry,
1999). Furthermore, the nominal control unom is
modified to comply with (9) in order to keep G
invariant.

Proposition 3. If the condition

∀x∈∂G, i∈I±(x)

LgV (t , x )

Lg L
ri−1
f hi(x )

≥ 0 (10)

is satisfied, the Lyapunov functionV (t , x ) is also
valid for the switching closed loop system.

Proof of Proposition 3:
As V (t , x ) is a valid Lyapunov function for the
nominal control loop, the sufficient conditions for
stability of the switching control loop on V (t , x )
and V̇ (t , x , u) with u = unom are satisfied.

If the control u is modified to meet condition (9),
there exists i ∈ I± with

y
(ri)
i (x , u) ≤ γi

γi < y
(ri)
i (x , unom),

which leads to

Lri

f hi(x ) + Lg L
ri−1
f hi(x ) u ≤ γi

γi <Lri

f hi(x ) + Lg L
ri−1
f hi(x ) unom

Lg L
r−1
f hi(x ) u < Lg L

r−1
f hi(x ) unom

and, with (10),

LgV (t , x ) u ≤ LgV (t , x ) unom. (11)

With

V̇ (t , x , u) = ∂V
∂t

+ ∂V
∂x

[ f (x ) + g(x ) u]

= ∂V
∂t

+ Lf V (t , x ) + LgV (t , x )u

with (11) ≤ ∂V
∂t

+ Lf V (t , x ) + LgV (t , x )unom

=V̇ (t , x , unom),

the functionV (t , x ) is also valid for the switching
control loop. 2

2.3 Invariance Control

Compliance with the constraints defined by (2)
is achieved by making the constraint admissible
region G invariant with respect to system (1).
This is realized by modifying the control signal
to comply with (9) on the region boundary ∂G,
which is always possible if the stability condition
(10) is met, because in this case either I +(x ) or
I−(x ) is empty.

The resulting invariance controller can be inter-
preted as a nonlinear, state dependent saturator

∀Φ(x )≥0 u∗(x ) ≤ u ≤ u∗(x )

or as a switching controller

u =







u∗(x ) unom > u∗(x ) ∧ Φ(x ) ≥ 0

u∗(x ) unom < u∗(x ) ∧ Φ(x ) ≥ 0

unom otherwise

.

In the design process of the invariance controller,
the output functions hi and design parameters
γi must be chosen, such that the stability con-
dition (10) is satisfied. This is usually the case
for constraints like min-max-limits on states of
the system with relative degree r ≤ 2. In some
cases, condition (10) can be met by tuning of the
parameters γi or by adding artificial constraints
to modify the shape of ∂G.

3. SIMULATION EXAMPLE

The presented invariance control method is ap-
plied to the model of the electromagnetically ac-
tuated mass spring damper system regarded in
(Gilbert and Kolmanovsky, 2001), which is de-
picted in figure 3.
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3.1 System Model and Nominal Control

The system model is given by

ẋ =

[
x2

−
k

m
x1 −

c

m
x2

]

︸ ︷︷ ︸

f (x)

+

[
0
α

m(d0 − x1)δ

]

︸ ︷︷ ︸

g(x)

u

with the parameters α = 4.5 · 10−5, δ = 1.99,
c = 0.659, k = 38.94, d0 = 0.0102, m = 1.54 given
in SI-units.

The state x1 corresponds to the position, x2 to the
velocity of the piece of mass.

The constraints are given by operational limits of
the position and a maximum velocity:

0.001 ≤ x1 ≤ 0.008 |x2| ≤ 0.01.

With the nominal control law unom(x )

unom(x ) =
(d0 − x1)

δ

α
(k v − cd x2) cd = 4,

the system has a stable equilibrium xd = [v, 0]
T
.

The Lyapunov function

V (x ) =
k

2
(x1 − v)2 +

m

2
x 2
2

is positive definite. Although its time derivative

V̇ (x , unom) = k x1ẋ1 + m x2ẋ2

= −(c + cd) x 2
2 ≤ 0

is only negative semidefinite, we can conclude
asymptotic stability with respect to xd from
LaSalle’s Principle (Sastry, 1999), as the set

{x |V̇ (x , unom) = 0} = {x | x2 = 0}

contains no other invariant set than xd.

3.2 Invariance Control Design

The output functions

y1 = h1(x ) = x1 − x 1 x 1 := 0.008

y2 = h2(x ) = x2 − x 2 x 2 := 0.01

y3 = h3(x ) = −(x1 − x 1) x 1 := 0.001

y4 = h4(x ) = −(x2 − x 2) x 2 := −0.01.
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are selected to represent the regarded constraints,
which have global relative degree r1 = r3 = 2,
r2 = r4 = 1.

The functions Φi(x ) can be directly obtained by
substitution of y(x ) and ẏ(x ) in (3):

Φ1(x ) =







x1 − x 1 x2 ≤ 0

−
1

2γ1
x 2
2 + x1 − x 1 x2 > 0

Φ2(x ) = x2 − x 2

Φ3(x ) =







−x1 + x 1 x2 ≥ 0

−
1

2γ3
x 2
2 − x1 + x 1 x2 < 0

Φ4(x ) = −x2 + x 2.

The resulting invariance region is depicted in
Fig. 4. Marks on the inner side of the boundary ∂G
indicate, which of the sets I 0, I +, I− is nonempty
on that part of ∂G.

The stability condition (10) is satisfied

for x2 > 0, I± ⊆ {1, 2}

LgV (x )

Lg L
r1−1
f h1(x )

=
LgV (x )

Lg L
r2−1
f h2(x )

= x2 > 0;

for x2 = 0, I± = ∅; and
for x2 < 0, I± ⊆ {3, 4}

LgV (x )

Lg L
r3−1
f h3(x )

=
LgV (x )

Lg L
r4−1
f h4(x )

= −x2 > 0.

The design parameters γi are chosen such that
the switched control signal does not violate the
control constraints given by

0 ≤ u ≤ 0.3

to make the simulation results comparable to
(Gilbert and Kolmanovsky, 2001):

γ1 = −0.0253 γ2 = 0

γ3 = −0.0461 γ4 = 0.

This is possible by precalculating the control on
the boundary ∂G and choosing the parameters γi,
such that u meets the control constraints.



PSfrag replacements

x1

x1

x2

x2

u V

tt

0
00

0

0

0.50.5

0.5

0.5

11

1

1

1.51.5

1.5

1.5

22

2

2

Fig. 5. Simulation results for x 0 = [0.001, 0]T and
xd = [0.0074, 0]T

PSfrag replacements

x1

x1

x2

x2

u V

tt

0
00

0

0

0.50.5

0.5

0.5

11

1

1

1.51.5

1.5

1.5

22

2

2

Fig. 6. Simulation results for x 0 = [0.0074, 0]T and
xd = [0.001, 0]T

3.3 Simulations

Fig. 5 and Fig. 6 show results obtained by numer-
ical simulation with Matlab. The event-function
option of the ode-suite was used to detect the
switching times and to restart the ODE45-solver,
which is based on a Runge-Kutta method. In the
simulation plots, dashed lines indicate the region
boundary and state or control constraints respec-
tively. Switching times are indicated by vertical
lines and circles.

In both scenarios the goal to enforce compliance
with all state constraints was achieved. In the
first scenario, which is comparable to the one
in (Gilbert and Kolmanovsky, 2001), the perfor-
mance of the invariance controller and the refer-
ence governor is equal.

4. CONCLUSION

An invariance control design method for nonlinear
control affine systems that are subject to multiple
state constraints is presented. The control concept
is based on switching of the control and is designed
as an extension of an ordinary feedback controller.
A sufficient condition for stability of the switching
closed loop systems is given. Future research fo-
cuses on the digital implementation of invariance
controllers and robustness issues.
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