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Abstract: Continuous fermentation requires fast and precise response to any
changes in process conditions. Nowadays control systems are either lacking or
inadequate for this purpose. This paper introduces a model-based system for
detecting operating conditions. The system based on the Linguistic Equation
(LE) approach was developed and tested in immobilized yeast fermentation. The
created models can be used for monitoring and diagnostics of fermentation and
flavour formation. By creating grounds for prediction of quality factors the models
increase options to control the product quality in different cases. The modular
model library is expandable. Copyright c©2005 IFAC
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1. INTRODUCTION

Efficient use of fermentation vessels is crucial
in brewing economy since fermentation is the
most time consuming step in the production of
beer. Fermentation with immobilized yeast brings
about advantages compared with conventional
processes, such as a very rapid process without
interruptions in the production (Linko et al., 1998;
Virkajärvi and Linko, 1999; Virkajärvi, 2001).

The Hartwall Lahti brewery has used immobilized
yeast in secondary fermentation in full production
scale, 300,000 hectolitres/year. The primary fer-
mentation capacity has been scaled up to 200,000
Litres per year (Kronlöf and Virkajärvi, 1999).
Recently primary and secondary fermentation
have been combined to form a complete fermenta-
tion block producing quality beer in less than two
days (Kronlöf et al., 2000).

Brewing is based on ethanol fermentation but the
most important aim is a balanced flavour not
the highest possible ethanol yield. The desired
traditional flavour is based on a balance of nu-
merous compounds. Most of these compounds are
produced during the main fermentation, which is
a rather complex biochemical process with many
side-reactions. The taste threshold is very small
for many flavour compounds, e.g. diacetyl, which
in lager beer indicates the maturity level of the
beer. (Virkajärvi and Linko, 1999)

The aim of this research is to improve the monitor-
ing and control of the continuous main fermenta-
tion with model-based methods. Fast and precise
response to changes in process conditions requires
an early detection of the changes in the flavour
balance. It should be possible to validate the re-
sults with process knowledge based on experience,
learning and remembering.



Fig. 1. Data-based modelling with linguistic equa-
tions.

Case-based reasoning (CBR) is a problem solving
paradigm for finding out the solution to a new
problem by remembering a previous similar situ-
ation and by reusing information and knowledge
of that situation (Aamodt and Plaza, 1994). The
CBR approach has been already earlier extended
to model-based systems in an indicator developed
for the prediction of paper machine runnability
(Juuso, 1999). The foundation of this application
is a case base containing Linguistic Equation (LE)
models of various operating situations with differ-
ent amount of breaks. The indicator compares on-
line measurements to the examples and uses the
information of the best fitting case to identify the
current situation (Ahola et al., 2004).

In the LE approach, non-linear multivariable
models are constructed in three steps: directions
of interaction are handled with linear equations,
nonlinearities are taken into account by mem-
bership definitions and time delays depend on
operating conditions. The models can be gener-
ated directly from data with an interactive ap-
proach which includes several stages (Fig. 1).
(Juuso, 2004).

This study is based on pilot scale experiments
with extensive measurements. The modelling of
different cases in immobilized yeast fermentation
was done using FuzzEqu toolbox based on Lin-
guistic Equations (LE) approach in Matlab envi-
ronment. This paper presents a small explanatory
example of the model system.

2. MODELLING WITH LINGUISTIC
EQUATIONS

Data-driven modelling with the Linguistic Equa-
tion (LE) approach consists of nonlinear scaling
and linear regression. Delays between the two
reactors shown in Fig. 2 must be taken into ac-
count. Variable groups (on right side in Fig. 1) are
analysed since the number of variables is high.

Fig. 2. Pilot scale continuous fermentation system.
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Fig. 3. The measurement data from the pilot scale
continuous fermentation.

2.1 Material and methods

Experiments were carried out in pilot scale in
VTT Biotechnology, which is an expert organ-
isation that carries out technical and technoe-
conomic research and development work in Fin-
land. The system consists of two reactors and a
buffer tank between them (Fig. 2). During the
first test campaign in 1996-1997, the immobilized
main fermentation was stable for more than 14
months (Virkajärvi, 2001). Aroma analyses were
performed for both reactors with from 3 to 5
days intervals. Aeriation and carbon dioxide were
recorded with same time intervals. The data set
contains totally 79 records for 19 variables. As
additional tests were needed for modelling, three
short test periods with wider range of flow were
arranged in 2001-2003. These tests also provided
more material for model validation.



All the time, operating condition changes were
quite moderate. Therefore, a spline-based inter-
polation was used for constructing a set of mea-
surements for training, testing and dynamic mod-
elling. The complete data set contains 108 records
for 19 variables: the data set for nine variables is
presented in Fig. 3. The additional measurements
are 2-methyl propanol, 3-methyl butanol and 2-
methyl butanol. All the aroma compounds are
measured in both reactors.

Modelling was done on the basis of the first 250
days of the first test campaign, and the rest of the
data was used for testing these models. The model
library contains models for both reactors.

2.2 Nonlinear scaling

For nonlinear models, the scaling technique must
be nonlinear as the model equations are linear.
The scaling functions called membership defini-
tions provide non-linear mappings from the opera-
tion area of the (sub)system, defined with feasible
ranges, to the linguistic values represented as a
real-valued interval [−2, 2]. Membership defini-
tions are represented by two second order polyno-
mials, one for negative and one for positive side.
Membership definitions defined by five real values
and corresponding linguistic levels very low, low,
normal, high, and very high, which correspond
to integer numbers -2, -1, 0, 1 and 2 (Fig. 4).
(Juuso, 2004)

The membership definitions were generated from
the full data set to cover the whole operating
area. Linguistic relations are obtained by non-
linear scaling with the membership definitions.
An example of the measurements after non-linear
scaling with these definitions is presented in Fig.
5. Only the actual measurements from the first
250 days were used for modelling. As the training
material contained only 50 data points, the full
range [−2, 2] of the scaled data was not available
for all the variables.

2.3 Interactions

The basic element of a linguistic equation (LE)
model is a compact equation

m∑

j=1

AijXj + Bi = 0, (1)

where Xj is a linguistic level for the variable
j, j = 1...m. The direction of the interaction is
represented by interaction coefficients Aij . The
bias term Bi was introduced for fault diagnosis
systems. Values Xj are here called as relations
(Fig. 5) as they have a linguistic meaning.
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Fig. 4. Membership definitions for nine variables.
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Fig. 5. Relations obtained from the actual data
with nonlinear scaling.

A LE model with several equations is represented
as a matrix equation

AX + B = 0, (2)

where the interaction matrix A contains all coeffi-
cients Aij and the bias vector B all bias terms Bi.
Equation alternatives defined by interactions and
bias terms are generated with linear regression for
predefined variable groups (Fig. 1). The number
of alternatives could be reduced with correlation
analysis or with principal component analysis.

Selecting equations from these alternatives is
based either on the overall fit or on the prediction
performance. Tuning algorithms reduce the error
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Fig. 7. Model surfaces of a five variable LE model on a normal operating point.

between model (selected equations) and the train-
ing data by modifying membership definitions,
linguistic equations or both.

The LE models were generated for five variable
groups, each group contains two of the three
control variables (air, CO2 and flow) and three
flavour compounds or attenuation. The develop-
ment principle is presented in Fig. 6 for the vari-
ables shown in Fig. 4. Three equations with lowest
fuzziness (right) were selected in this case. The
resulting equations are linear and can be used
to any direction. Interaction surfaces are always
linear. Interaction coefficients can also be changed
manually with sliders.

The nonlinear behaviour can be assessed with
model surfaces, e.g. in a five variable equation

model shown in Fig. 7, each subplot corresponds
to a situation where the other two variables are in
normal value. Other local nonlinear models can
be selected by changing these values with sliders.
These model surfaces are used in knowledge-based
model assessment.

3. OPERATING CONDITIONS

Fuzzy linguistic equations are essential in present
applications of linguistic equations in fault diag-
nosis and dynamic modelling. Fuzzy methods take
care of the smooth transitions between the cases,
and the degree of membership evaluated from the
fuzziness of the equations.
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Fig. 8. Detection of operating conditions with LE models: fuzziness and limits of fuzziness for three
equations and the resulting degrees of membership for each data point (upper curve) and a moving
average (lower curve).

The fuzziness,

Sj =

m∑

j=1

AijXj + Bi, (3)

is the basis of the detection of operating condi-
tions. The vector defined by interaction coeffi-
cients and bias terms is normalised for each equa-
tion. The fuzziness S can be used for clustering
the data on the basis of the interaction directions.
For larger models, the equation system is a set
of equations where each equation describes an
interaction between two to five variables.

Detection of operating conditions is based on
fuzziness (Eq. 3): the degree of membership for
an equation is obtained from the fuzziness (left
in Fig. 8) and the limits defined for the fuzziness
(center). The degree of membership for each equa-
tion is one if the corresponding fuzziness is close
to zero and goes to zero with increasing fuzziness.

The degree of membership for the case is obtained
from the membership degrees of the equations by
fuzzy reasoning and filtered with moving average
(right in Fig. 8). Equations can have different
weight factors depending on the sensitivity of the
equation for the case detection. FuzzEqu Toolbox
provides tools for experimenting with different
methods and windows.

4. RESULTS AND DISCUSSION

The modelling was done efficiently and the results
were promising for the further use. The model
based on the first 250 day operates fairly well
throughout the tests (Fig. 8). The effect of the
flow can be seen as a slight decrease in the degree
of membership although the range of the flow
was much wider in the latest test material (Fig.
3). Some fluctuations of flavour ingredients were

detected for only short time periods as the process
was stable. Time span of these fluctuations was
usually too short for development of specialised
models.

A more detailed model with seven equations for
all the prereactor measurements indicates clear
differences in the end of the test period. All the
equations have there high fuzziness (Fig. 9) and
the degree of membership for the model goes
to very low values (Fig. 10). The effect of the
flow to the concentrations is natural, increasing
or decreasing. Insight to the process operation is
maintained since all the modules can be assessed
by expert knowledge and membership definitions
relate measurements to appropriate operating ar-
eas.

Linguistic equations provide a very compact im-
plementation method for varying operating con-
ditions since only five parameters (Fig. 4) are
needed for each variable. For the fermentation
application the combination of fuzzy logic and lin-
guistic equations provides several improvements:

• The linguistic equation (LE) modelling ap-
proach is very efficient. Compact models pro-
vide insight to the process.

• Performance of the data-based models is
good for the flavour compounds and control
variables in both the prereactor and the main
reactor, especially for alcoholes.

• Modelling of special cases requires more tests
with changing operating conditions.

• Detection of fluctuations in the balance of the
flavour ingredients with this type of models
is a feasible approach.

• Models provide useful information for moni-
toring and control.

• Extension with continuous analysis of the fer-
mentation and the flavour ingredients would
be beneficial.
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Fig. 10. Degree of membership of the LE model.

Each equation can be used for dividing the data
into three categories defined by the fuzziness level:
fuzziness is close to zero in the normal operation
(Level 0), large positive values correspond to a
different situation (Level +1), and large negative
values to a third situation (Level -1). Since each
level can be considered as a fuzzy label, the data
set can be used for generating a fuzzy relational
model. For seven equations there are 2187 alter-
natives but very few of them have considerable
degree of membership.

This provides a basis for finding similar situations,
i.e. cases where same fuzzy relations have high
degrees of membership. According to the results
this approach is clearly feasible but the data set
is still too limited for completing the proposed
analysis with steady-state models. The emphasis
is now moving to LE based dynamic models and
their use as process condition indicators.

5. CONCLUSIONS

The model-based system based on linguistic equa-
tions is efficient for detecting fluctuations of op-
erating conditions in the immobilized yeast fer-
mentation. Deviations from the normal operation
can be detected, and the modular model library is
expandable and a good basis for development of
controllers.
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