
     

                                                                                                        
 

                                      
                                                                            

 
 
 
 
 
 
 
 
 

ACHIEVING TRADEOFFS BETWEEN FUNCTIONALITY AND SAFETY  
IN EARLY SYSTEM DESIGN  

 
 

Christian Grante1, Yiannis Papadopoulos2 
 
 

1Volvo Cars, Sweden,  cgrante@volvocars.com 
2Department of Computer Science, University of Hull, U.K.,  y.i.papadopoulos@hull.ac.uk 

 
 
 

 
Abstract: In this paper, we propose a novel method that helps designers to form design 
concepts that achieve optimal tradeoffs among functionality, cost and safety early in the 
design. The method combines genetic algorithms with preliminary risk analysis and is 
largely automated thus satisfying the preconditions for application in complex systems. A 
Pareto multi-objective optimisation approach helps to generate a set of design concepts 
that represent optimal solutions for different levels of expenditure and risk, while the final 
decision on which design concepts are most promising is left to humans. Copyright © 
2005 IFAC  
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1. INTRODUCTION AND BACKGROUND 

 
The design of a new engineering system (e.g. a car) 
typically starts at a conceptual level where the 
functions to be provided by the system must be 
decided in the context of constraints like the cost of 
components, the cost of development and the 
production capabilities of a company. There are 
usually a number of design possibilities that can be 
translated to different concepts which could provide 
different functions. Issues like potential markets, 
volumes, costs, reliability or safety requirements and 
ultimately the potential for profit have to be 
addressed for a concept to be translated into a 
successful design. Typically, satisfaction of most 
constraints is required; however the motivation for 
proceeding further with a design concept is usually 
the potential for profit measured absolutely or more 
commonly as return on investment.  
 
There is often a wealth of information from past 
experience or competitor products upon which the 
decision about the potential of a new design could be 
evaluated. Such information typically includes 
knowledge of desirable functions, of the value that 
customers are prepared to pay for those functions, 

the components that are likely to be needed to deliver 
such functions and in many case reliability data about 
components. In practice, however, it is not always 
obvious how this diverse information can be used to 
decide which combination of functions and 
components should be selected for the new design. 
This is especially true when there are a vast number 
of viable combinations of functions and components, 
because a decision on which combination is best 
would require evaluation of all those design options 
using, for example, simple or more complex 
calculations of profit, cost and perhaps reliability or 
risk. Realistically, however, and for pragmatic 
designs which may have hundreds of functions and 
thousands of components, exhaustive evaluation of 
all options is impossible even if the simplest 
calculations were adopted. This is especially true in 
designs for complex distributed systems where 
functions can be allocated in many different ways on 
components of the architecture resulting to a plethora 
of different design concepts.   
  
To address this problem, in this paper we present a 
method that provides automated support to designers 
in the difficult task of arriving at an optimal design 



     

concept for a complex system at early stages of the 
design. The term design concept is used here to 
describe a set of functions delivered by the system 
and a set of components that represent the technical 
implementations1 of these functions. An optimal 
design concept is one that provides maximum 
potential for profit and can be achieved within 
budget whilst leading to an implementation that 
offers acceptable levels of safety. Such design 
concepts would clearly be desirable representing 
potentially feasible and socially acceptable business 
opportunities in which it would be worth investing. 
  

2. OUTLINE OF METHOD 
 
In the proposed approach, the design of a new 
engineering system starts with the construction of a 
list of functions considered for inclusion in the new 
system. For a system that provides active safety 
functions in a passenger car, for instance, such 
functions would include antilock braking, traction 
control, emergency brake assistance, and vehicle 
stability control. In the proposed method, the 
following information should be established for each 
function potentially included in the system: 
 
• an estimate of the extra value that customers 

would be prepared to pay for inclusion of this 
function 

• the technical implementation of the function, 
i.e. a set of components needed to deliver the 
function  

 
Note that in our approach, each component can 
participate in more than one technical 
implementation. The relationship between functions 
and components must therefore be established and 
provided as an input in the form of a matrix that 
relates functions to sets of components (i.e. their 
technical implementations). For each component 
potentially employed by a function, the cost and 
average failure frequency must also be established 
and provided as input to the optimisation process. 
We hope that this requirement would not pose a 
problem in practice, as large companies are 
reasonably expected to maintain cost and reliability 
databases that are already useful in existing 
applications. 
 

The set of all candidate functions considered for a 
new design obviously engages all candidate 
components and therefore represents the most 
expensive (and functionally powerful) potential 
design solution. Each subset of these functions 
represents a less complete and less expensive 
specification for the system under design. Given that 
data about the value of functions and the cost & 
reliability of components is available, then the 
potential profit, cost and level of safety associated 
with each potential design solution can be calculated 
as follows: 

                                                 
1 For the purposes of this paper, the term technical 
implementation is used to describe the set of 
components needed for the delivery of the function  

• Cost can be calculated as the sum of costs of 
components participating in all technical 
implementations of the included functions. 

• Profit can be calculated as the sum of function 
values minus the overall cost of components.   

• An indication of the safety offered by each design 
solution can be given by a preliminary calculation 
of risk2. Risk can, in turn, be estimated as the 
sum, calculated over all functions in a design 
solution, of the severity of functional failure 
multiplied by the failure frequency of the 
respective technical implementation.  

 
Assuming that data is available to perform the above 
calculations, the problem that we try to address can 
then be seen as one of identifying which design 
solution provides optimal values for the above 
calculations of cost, profit and risk. One approach to 
this problem would be to exhaustively enumerate all 
potential design solutions (representing different 
combinations of functions) and for each solution 
perform the above calculations. However, if we were 
to adopt this approach, we would encounter a 
classical problem of combinatorial explosion, which 
in practice means that for a modestly large number of 
functions the number of design solutions and 
consequent calculations is too large to contemplate.  
 
To overcome this difficulty, we opted to apply 
evolutionary search and optimisation techniques. We 
developed a genetic algorithm which performs a 
systematic, but selective search for those potential 
design solutions (i.e. configurations of functions and 
components) that optimise profit within given cost 
constraints and risk requirements. The algorithm 
simultaneously generates several solutions by 
carrying out an iterative multidirectional search.  In 
the course of this search, the genetic algorithm 
calculates the fitness of candidate designs in terms of 
profit, cost and risk and then ranks potential solutions 
according to their “degree of dominance” (Fonseca 
and Fleming, 1998) thus forming and progressively 
improving a “Pareto front” of optimal solutions (see 
section 4 for details). 
 
In the context of the problem that we examine, this 
type of multidirectional search provides the essential 
flexibility required in the final decision making. 
Theoretically optimal (in terms of profit, cost and 
risk) solutions, for example, may be impractical 
because they imply awkward physical arrangements 
of components. In such cases, suboptimal solutions 
may be preferable. In a different scenario, solutions 
may be theoretically better than others because they 
achieve higher profit within the same cost constraint. 
However, the extra profit may be achieved at 
significant extra cost in which case less profitable 
designs may be preferable as they achieve a better 
ratio of profit over cost. Precisely because such 
decisions are very difficult, rather than prescribing a 

                                                 
2 Safety can indeed be defined as “freedom from 
unacceptable risk”, see for example (CENELEC, 
1999) 
 



     

single optimal solution, the proposed method 
generates several solutions and leaves the final 
judgements to humans.  
 
A precise mathematical formulation of the problem 
and a more detailed presentation of the optimisation 
algorithms follow which, we hope, provide a more 
thorough exposition of the proposed approach.   
 

3. MATHEMATICAL FORMULATION 
 
To represent the problem more formally, a matrix 
notation was developed drawing from earlier work 
by Suh (2001) in axiomatic design and Grante and 
Andersson (2003) in design optimisation. In this 
notation, functions delivered by the system under 
design are represented in a function vector F and 
components in a component vector C. A realisation 
vector rvi defines the technical implementation of 
function Fi. Each element of the realisation vector 
declares the presence or not of a component in the 
technical implementation and can have the value of 
one – indicating that the corresponding component is 
needed – or zero indicating that the component is not 
needed. The realisation vectors for all customer 
functions, 
 

  mi K1=rv ,  
 
together form the realisation matrix RM. Thus the 
problem can be described according to equation (i), 
 

  CRMF ⋅=    ( i ) 
 

i.e., 
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where m is the number of potential functions and n 
the number of components. The function vector 
differs from the component vector in that the 
component vector may have alternative 
implementations of components, for example 
variants provided by different manufacturers.  
 
Each combination of components yields one possible 
solution to the problem. For a problem with n 
components and an average of d alternative 
implementations for each component there are 2(n*d) 
different possible solutions (note the combinatorial 
explosion). A particular solution, X, is expressed by 
a vector 
 

  [ ]1 2, ,.... nx x x=X  ,  
 
where xi is either zero indicating that the component 
is not part of the design solution or a natural number 
between 1 and dTIi indicating which implementation 
of component is part of the solution. In order to 
calculate the value that customers will be prepared to 
pay for a specific solution, the functions that could 

be possibly realised using the components included 
in a solution must be determined. The function 
realisation vector, W, represents this. W is calculated 
according to equation (ii). 
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Where diagXT is a diagonal matrix with the elements 
of XT in the diagonal and diaginXT is a diagonal 
matrix with the elements of XT which are not zero 
inverted in the diagonal. Thus, 
 

 TT diagindiag XX ⋅  
 
is a vector that contains ones and zeros, where one 
indicates that a component is a part of the solution 
and a zero that it is not. The notation  
 

 a⎢ ⎥⎣ ⎦  
 
denotes the largest integer that is less than or equal to 
a. The number of components used by function i that 
are included in solution X is represented by 
 

  )( TT
i diagindiag XXrv ⋅⋅ . 

   
This number is divided by the number of all 
components needed to implement function i, i.e. 
 

 T
i

T rv1 ⋅ ,  
 
where 1T is a vector of one. If X contains all 
components needed by Fi this quotient equals 1, 
otherwise it is less than one. Equation (ii) thus 
returns 1 only for functions that are implemented by 
X. The total value, tv, of a solution is calculated by 
adding the values of all functions that can be realised 
by solution X, i.e.  
 

 VXWX ⋅= Ttv )()(    ( iii ) 
 
where V is the vector containing the values that 
customers are prepared to pay for functions 1..m 
respectively,  i.e.,  
 

 [ ]1 2, ,...,T
mv v v=V  . 

 
The cost of implementing each component is 
represented by the cost-implementation matrix CIM,  
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where each component cost (cij) contains the 
development, material and production costs. Note 
that each component n may have up to an different 
implementations. CIM is therefore a representation 
of the costs involved in these alternative 
implementations.   The total cost c of solution X is 
obtained by adding the cost of the selected 
implementations for components participating in X 
(components for which xi =1). In this simplified 
model, profit, p, is expressed as the value that the 
customer is prepared to pay for a particular design 
solution minus the cost of developing and producing 
it; see equation (iv). 
 

  ( ) ( ) ( )p tv c= −X X X   ( iv ) 
 
The optimisation problem can thus be described as 
finding the set of components, X, that maximises 
profit p(X) without exceeding the development 
budget. To introduce safety as a parameter in the 
optimisation, we also employ the commonly used 
definition of safety as “freedom from unacceptable 
risk” and introduce risk calculations into the model. 
Risk is defined as a combination of the consequence 
(s) and the frequency (f) of an unplanned, 
undesirable event. According to Thomson (Thomson, 
1987) but also the CENELEC railway safety 
standards (CENELEC, 1999), risk is the product of 
consequence and frequency, i.e. 
 

  s f risk ×=     ( v ) 
 
Since several events can occur, the risk is the sum of 
all events, and for n events the risk is calculated 
according to equation (vi). 
 

( ) ( )∑ ×=
n

i ii kfrisk   ( vi) 

 
A product introduced on the market has to be safe, 
i.e. must only entail an acceptable level of risk. Thus, 
in order to evaluate the risk of a potential design 
solution, additional data must be included in the 
model. The first such data is the consequence vector  
 

  [ ]m, ., h,  hh …= 21 H ,   
 
which contains a quantified indication of the severity 
of failure of each function. For guidelines on how to 
interpret qualitative severity classes  (marginal, 
critical, catastrophic) into quantitative indices the 
reader is referred to the CENELEC standards 
(CENELEC,1999) 
 
The second additional input required to enable risk 
calculations is the matrix,  
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that contains the frequency of malfunction of 
component implementations, which is similar in 
structure to the cost-implementation matrix CIM. 
 
The main difficulty in performing preliminary risk 
assessment so early in the design is that it must be 
done in the absence of a system architecture. This is 
inevitable, though, since the aim is precisely to 
establish which functions the design should include, 
and from this to proceed in the development of an 
architecture. Without knowledge about how 
components are connected, however, risk cannot be 
calculated. For the purposes of this analysis, a 
conservative series architecture is always assumed in 
which functions fail if any single component in their 
technical implementation fails. We should note that 
although this is a conservative assumption, it often 
gives a fair estimation of the actual behaviour of 
functions when they are eventually realised in 
systems. If fault tolerance is already planned at this 
early stage, fault tolerant schemes will have to be 
represented as single components with the reduced 
failure frequency that they achieve directly entered in 
the frequency matrix FM. From the data specified 
above, and using classical reliability theory, the 
failure frequency of each function ffi, can be 
calculated according to equation (vii). 
  

 ∏
=

∀−−=
n

j
ji jfff

1

),1(1   ( vii ) 

 
where fj is the failure frequency of the selected 
implementation of each component. If the component 
does not participate in the design solution (xi = 0) 
then fi is zero. A function frequency vector can now 
be created to include the failure frequencies of all 
functions according to (viii).  
  

 [ ]mffffff ,,, 21 K=FF   ( viii ) 
 
The level of risk associated with each function, cfri, 
is obtained by multiplying the frequency of 
malfunction with the severity of consequence: 
 

  iii ffhfr ⋅=    ( ix ) 
 
A new vector of function risk FR can now be 
obtained according to (x), where diag(H) represents a 
diagonal matrix with the elements of H in the 
diagonal.  
 

  FFHFR ⋅= )(diag   ( x ) 
 
Finally, the total risk, r, of a design concept is 
calculated as the sum of all risks associated with the 
functions included in this concept. Thus r is 
calculated by multiplying the customer function risk 
vector with the function realisation vector W(X), see 
equation (xi). 
 

  )()()( XWFRX ⋅= TXr   ( xi ) 
 
This equation can be used for prediction of the likely 
risk associated with a potential design solution. 



     

 
4. EVALUATION USING OPTIMISATION 

 
Assuming that input data is provided for functions 
and components according to the specification of 
section 3, the problem is then formulated as one of 
multiple-objective optimisation. The objectives are to 
maximise the likely profit of a design concept and 
simultaneously minimise cost and risk as specified 
below:  
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Beyond the above formulation of the problem as 
multi-objective optimisation, we also opted for a 
multi-directed search in which the optimisation 
algorithm is looking not for a single optimal solution 
but for a set of Pareto optimal solutions also known 
as non-dominated solutions. In Pareto optimisation a 
solution is said to dominate another if it is better in 
all objectives. Thus, if we consider a minimisation 
problem with k objectives and two solution vectors, x 
and y, then x is said to dominate y, denoted  yx f , 
if: 
  { } ( ) ( )yx ii ffki ≤∈∀ :,...,2,1   and 

 { } ( ) ( )yx jj ffkj <∈∃ :,...,2,1            ( xiii ) 
 
Equation (xiii) implies that x dominates y if x is as 
good as y in all objectives, and that there is at least 
one objective in which x is better. Using this concept 
of non-dominated solutions, our approach yields a set 
of design solutions that provide higher potential for 
profit for different levels of expenditure and risk. 
The result of this optimisation can be graphically 
visualised as a Pareto front which shows trade-offs 
between profit, cost and risk, i.e. how maximum 
profit increases as cost and safety constraints are 
decreased in various configurations and vice versa.  
 
The combination of a Pareto approach with genetic 
algorithms has previously been shown to work well 
on similar engineering design problems, see 
(Andersson, 2001), and was, therefore, also adopted 
in this work. To address the given optimisation 
problem, first it was necessary to model potential 
design solutions as genetic material (chromosomes) 
that can be meaningfully manipulated by a genetic 
algorithm. For this purpose, a string of natural 
numbers with the same length as the number of 
available components was used to represent each 
potential design solution. The value of each number 
in the string is 0 when the corresponding component 
does not participate in the design solution or a 
positive integer that corresponds to the variant of the 
implementation of the component employed in the 
solution.  
 

We also developed a genetic algorithm which applies 
an evolutionary optimisation process on this type of 
genetic material. In the course of that process, the 
algorithm first creates a number of random 
chromosomes each representing a potential design 
solution that employs some of the candidate 
functions and components.  The algorithm then 
calculates the fitness of each individual in this 
population of individual solutions using the 
mathematical model presented in section 3. One 
difficulty here is that, in Pareto optimisation, there is 
no single objective function to determine the fitness 
of different individuals. Therefore, the relative 
ranking scheme presented by Fonseca and Fleming 
(Fonseca and Fleming, 1998) is used to rank 
individuals according to their “degree of dominance” 
which for each individual equals the number of 
individuals that is dominated by, plus one. In this 
approach, design concepts with a degree of 
dominance equal to one are effectively non-
dominated solutions which lie on the Pareto front, 
and therefore represent the fittest designs in a given 
population of candidate design solutions. 
 
To progressive improve this Pareto front in the 
course of the evolutionary optimisation, the genetic 
algorithm creates new generations of candidate 
design solutions using an implementation of a 
recently proposed algorithm (Anderson and Wallace, 
2002). In this algorithm, parents are chosen from the 
two most recent generations of candidate designs and 
then basic genetic mixing and modification 
mechanisms such as one-point crossover and flip 
mutation are performed to create children. For each 
child, the most genetically similar individual in the 
entire population is then identified and the fitness of 
this individual is compared with that of the child. If 
the child is fitter it replaces the older individual in the 
population.  
 
There is evidence that this replacement strategy 
counteracts genetic drift that can confine population 
diversity and lead to inbreeding. Poor diversity in 
practice means that the population is clustered at the 
extremes of the Pareto front, which means that trade-
offs that could be achieved in the middle area are not 
clearly identified.  Note that in classical genetic 
algorithm optimisation, the population of a genetic 
algorithm usually converges to a single optimal point 
[Goldberg, 1989]. However, using the concept of 
dominance it is possible to adjust the algorithm so 
that it spreads the population effectively over the 
entire Pareto front, thus helping to identify tradeoffs 
among the different parameters of the optimisation.  
 

5. RESULTS 
 

The method has been tested in Volvo Cars on a case 
study which included 52 active safety functions 
supported by 48 components for a new vehicle 
model. This configuration could result in more than 
70 billion possible design concepts. Manual 
evaluation of all those concepts with regards to cost, 
profit and risk would have certainly been impossible. 
However, with the aid of the optimisation tool, it was 



     

possible to arrive at a smaller set of concepts that 
potentially maximised profit within given cost and 
risk constraints.  A number of interesting conclusions 
can be drawn from this study. 
 
Firstly, the study showed that the functionality (i.e. 
the value for customers) and potential profit of the 
system almost doubled when the optimisation 
approach was used as a replacement of the traditional 
manual approach to development and selection of 
new design concepts.  
 
Secondly, when only cost and profit criteria were 
used in the optimisation process many optimal 
concepts entailed an unacceptable level of risk (see 
the concepts in Fig.1 marked as circles). If these 
design concepts were allowed to be further 
developed, their design would almost certainly have 
been revisited at a later stage to address the problem 
of high risk.  
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Fig. 1. Risk of design concepts before (o) and after 

(x) the design iteration aided by the tool.   
 
However, by introducing risk as a parameter in the 
optimisation process and by iterating the method we 
were able to identify and correct design weaknesses 
early in the design. Such weaknesses included key 
components that consistently contributed to a 
substantial increase of risk across the design space. 
By replacing these components with more reliable 
equivalents a significant risk reduction was achieved 
in almost all concepts (crosses in Fig.1). The 
consequent shift of the Pareto front in the area of 
acceptable risk is illustrated in Fig.1.  
 

6. CONCLUSIONS 
 
There is presently a lack of methods to support the 
development and optimisation of abstract design 
concepts for new systems. As systems become more 
complex, especially distributed systems, the absence 
of such support becomes increasingly problematic.  
 
In this paper, we presented a method that provides 
automated support in the optimisation of abstract 
designs with respect to a number of objectives that 
include cost, profit and risk. A mathematical 
framework was presented which models the 
relationships between functions and their technical 
implementations. Based on this framework, the 
problem of developing abstract design concepts was 

formulated as a multi-objective optimisation 
problem, i.e. one of maximising profit while keeping 
to a restricted development budget and creating a 
product that entails only acceptable levels of risk.  
 
An optimisation tool was developed, and, with the 
aid of this tool, the method was evaluated in a case 
study on active safety systems, performed by Volvo 
Car Corporation. A main result from this study is a 
Pareto front of optimal design solutions for an active 
safety system that explores potential trade-offs 
between profit, cost and risk in various 
configurations for this system. The study has shown 
that the proposed method could double the customer 
value and company returns for given levels of 
expenditure. It also demonstrated the potential of the 
method for initiating useful design iterations driven 
by risk criteria at very early stages of the design.  
 
By using this approach, we hope that some aspects of 
early design can be improved. At the same time, we 
currently extend this work by developing a concept 
for application to more refined architectural models 
produced at later stages of the design (Papadopoulos 
and Grante, 2004). The potential benefits from 
further extension of these techniques are substantial 
and include further rationalisation of the design 
process, fewer late design changes, improved value 
for customers and potentially higher returns for 
producers. 
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