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Abstract: In this paper we deal with some finite-time control problems for discrete-
time, time-varying linear systems. First we provide necessary and sufficient con-
ditions for finite-time stability; these conditions require either the computation of
the state transition matrix of the system or the solution of a certain difference
Lyapunov inequality. Then we address the design problem. The proposed condi-
tions allow to find state feedback and output feedback controllers which stabilizes
the closed loop system in the finite-time sense. Copyright c©2005 IFAC

Keywords: discrete-time systems, linear systems, finite-time stability, output
feedback.

1. INTRODUCTION

When dealing with the stability of a system, a
distinction should be made between classical Lya-
punov stability and finite-time stability (FTS) (or
short-time stability). The concept of Lyapunov
asymptotic stability is largely known to the con-
trol community; conversely a system is said to be
finite-time stable if, once we fix a time-interval,
its state does not exceed some bounds during
this time-interval. Often asymptotic stability is
enough for practical applications, but there are
some cases where large values of the state are
not acceptable, for instance in the presence of
saturations. In these cases, we need to check that

these unacceptable values are not attained by the
state; for these purposes FTS could be used.

Most of the results in the literature are focused
on Lyapunov stability. Some early results on FTS
can be found in (Dorato, 1961), (Weiss and In-
fante, 1967) and (D’Angelo, 1970); more recently
the concept of FTS has been revisited in the
light of recent results coming from Linear Matrix
Inequalities (LMIs) theory (Boyd et al., 1994),
which has allowed to find less conservative condi-
tions guaranteeing FTS and finite time stabiliza-
tion of uncertain, linear continuous-time systems
(see (Abdallah et al., 2002), (Amato et al., 2001)).

In this paper we consider time-varying discrete-
time systems. In (Amato et al., 2004) some condi-



tions for finite-time stability have been provided.
The main theorem of (Amato et al., 2004) guaran-
tees FTS if and only if either a certain inequality
involving the state transition matrix is satisfied,
or a symmetric matrix function solving a certain
Lyapunov difference inequality exists.

The condition involving the state transition ma-
trix cannot be used as the starting point to solve
the synthesis problem. Therefore, in view of the
design problem, we focus on the condition involv-
ing the Lyapunov inequality. However this condi-
tion can become computationally hard to apply,
since it requires to study the feasibility of N dif-
ference inequalities, if [1, N ] is the time interval in
which FTS is studied. For this reason a sufficient
condition for FTS which requires to check the
feasibility of only one inequality is used to address
the problem of designing state feedback and out-
put feedback controllers guaranteeing some finite-
time performance.

The paper is organized as follows: in Section 2 the
definition of finite-time stability is recalled and
specialized to the discrete-time case, the condi-
tions for finite-time stability provided in (Amato
et al., 2004) are recalled and the problem we
want to solve is formally stated. In Section 3 we
address the FTS synthesis problems, namely some
sufficient conditions for the existence of an output
feedback controller guaranteeing finite-time stabi-
lization of the closed loop system are provided.
Our conclusions are drawn in Section 4.

2. PROBLEM STATEMENT AND
PRELIMINARIES

In this paper we consider the following discrete-
time time-varying linear system

x(k + 1) = A(k)x(k) + B(k)u(k) (1a)
y(k) = C(k)x(k) (1b)

where A(k), B(k) and C(k) take value in Rn×n,
Rn×m and Rp×n, respectively.

The general idea of finite-time stability concerns
the boundedness of the state of the system over
a finite time interval for some given initial con-
ditions; this concept can be formalized through
the following definition, which is an extension to
discrete-time systems of the one given in (Dorato,
1961).

Definition 1. (Finite-time stability). The discrete-
time linear system

x(k + 1) = A(k)x(k) k ∈ N0 (2)

is said to be finite-time stable with respect to
(δ, ε, R, N), where R is a positive definite matrix,
0 < δ < ε, and N ∈ N0, if

xT (0)Rx(0) ≤ δ2 ⇒ xT (k)Rx(k) < ε2

∀k ∈ {1, . . . , N}
4

Remark 2. Lyapunov Asymptotic Stability (LAS)
and FTS are independent concepts: a system
which is FTS may be not LAS; conversely a LAS
system could be not FTS if, during the transients,
its state exceeds the prescribed bounds. ¦

The following theorem is fundamental for the
subsequent development.

Theorem 1. (Nec. and suff. conditions FTS). The
following statements are equivalent:

i) System (2) is FTS with respect to (δ, ε, R, N).
ii) Φ(k, 0)T RΦ(k, 0) < ε2

δ2 R for all k ∈ {1, . . . , N},
where Φ(·, ·) denotes the state transition ma-
trix.

iii) For each k ∈ {1, . . . , N} let

Pk(k) = R

Pk(h) = A(k)T Pk(h + 1)A(k)
h ∈ {0, 1, . . . , k − 1}.

then Pk(0) < ε2

δ2 R.
iv) For each k ∈ {1, . . . , N} there exists a sym-

metric matrix-valued function Pk(·) : h ∈
{0, 1, . . . , k} 7→ Pk(h) ∈ Rn×n such that

A(k)T Pk(h + 1)A(k)− Pk(h) < 0
h ∈ {0, 1, . . . , k − 1} (3a)

Pk(k) ≥ R (3b)

Pk(0) <
ε2

δ2
R . (3c)

Moreover, each one of the above conditions are
implied by the following.

v) There exists a symmetric matrix-valued func-
tion P (·) : k ∈ {0, 1, . . . , N} 7→ P (k) ∈ Rn×n

such that

A(k)T P (k + 1)A(k)− P (k) < 0 ,

k ∈ {0, 1, . . . , N − 1} (4a)

P (k) ≥ R , k ∈ {1, . . . , N} (4b)

P (0) <
ε2

δ2
R . (4c)

vi) There exists a symmetric matrix-valued func-
tion Q(·) : k ∈ {0, 1, . . . , N} 7→ Q(k) ∈ Rn×n

such that

A(k)Q(k)A(k)T −Q(k + 1) < 0 ,

k ∈ {0, 1, . . . , N − 1} (5a)

Q(k) ≤ R−1 , k ∈ {1, . . . , N} (5b)

Q(0) >
δ2

ε2
R−1 . (5c)



PROOF. The equivalence between i)–iv), to-
gether with the fact that each one of i)–iv) are
implied by v), can be proven by following the
guidelines of (Amato et al., 2004).

Now we prove that the conditions v) and vi) are
equivalent. Indeed, by using Schur complements,
we have that (4a) is equivalent to

( −P (k) A(k)T P (k + 1)
P (k + 1)A(k) −P (k + 1)

)
< 0 . (6)

By pre- and post-multiplying the last inequality
by (

P−1(k) 0
0 P−1(k + 1)

)
,

we obtain that (6) can be equivalently rewritten
( −P−1(k) P−1(k)A(k)T

A(k)P−1(k) −P−1(k + 1)

)
< 0 , (7)

which in turn is equivalent to
(−P−1(k + 1) A(k)P−1(k)

P−1(k)A(k)T −P−1(k)

)
< 0 ; (8)

the equivalence follows by letting Q(k) = P−1(k)
and using Schur complements again. 2

We have some remarks about the use of the results
contained in Theorem 1.

Remark 3. Statements ii) and iii) are very useful
to test the FTS of a given system. However,
as shown in (Amato et al., 2004), they cannot
be used for design purposes. In the same way
condition iv) is not useful from a practical point
of view, since it requires to study the feasibility
of N difference inequalities, if [1, N ] is the time
interval of interest.

Conversely the sufficient condition v) and vi)
require to check only one difference inequality. 3

Remark 4. Note that a matrix function P (·) sat-
isfying condition v) in Theorem 1 can be found, if
one exists, by solving recursively an LMIs feasibil-
ity problem through the LMI Toolbox (Gahinet et
al., 1995). 3

Remark 5. Condition vi) will be used for the state
feedback design. 3

In the following example we use the results of
Theorem 1 to show that finite-time stability and
asymptotic stability are independent concepts.

Example 1. (FTS and LAS). Let us first consider
the system

x(k + 1) =




0.8026 1.0000 0.2392
−0.1842 0.8026 0.2034

0 0 0.3333


x(k) .
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Fig. 1. Relative gap between the necessary and
sufficient condition i)–iv) and the sufficient
condition v) of Theorem 1

This system is asymptotically stable, since its
eigenvalues are inside the unit circle. But it is
not FTS with respect to (δ, ε, R, N) with δ = 1,
ε = 1.78, R = I and N = 5. Indeed condition ii),
iii) and iv) of Theorem 1 fails for k = 3.

On the other hand, let us consider the system

x(k + 1) =




0.3333 0.4189 0.0833
0 1.1053 0.4189
0 0 0.3333


 x(k) ,

which is unstable. Anyway, by applying condition
ii) or iii) or iv) of Theorem 1 it is possible to show
that this system is FTS with respect to (δ, ε, R, N)
with δ = 1, ε = 2.13, R = I and N = 5. 4

Example 2. In order to compare the necessary
and sufficient conditions i)–iv) stated in Theo-
rem 1 with the sufficient condition v) we have
randomly generated 1,000 discrete-time linear sys-
tems. For each sample we have computed the
minimum ε such that the given system is FTS wrt
(δ, ε, R, N) with δ = 1, N = 5, R = I.

Figure 1 shows, for each generated system, the
value of the following quantity

err% = 100(εsuff − εtrue)/εtrue ,

where εtrue denotes the exact value of ε computed
using conditions i)–iv) and εsuff its estimated value
obtained applying condition v).

Note that for most of the systems the value of
err% is close to zero. 4

Now, given system

x(k + 1) = A(k)x(k) + B(k)u(k) (9)

we consider the time-varying state feedback con-
troller

u(k) = G(k)x(k) , (10)



where G takes value in Rm×n. One of the goal
of this paper is to find some sufficient conditions
which guarantee that the state of the system given
by the interconnection of system (9) with the
controller (10) is stable over a finite-time interval.

Problem 1. Given system (9), find a state feed-
back controller (10) such that the closed-loop sys-
tem

x(k + 1) = (A(k) + B(k)G(k))x(k) (11)

is finite-time stable with respect to (δ, ε, R, N). 4

Then with respect to system (1), we consider the
following dynamic output feedback controller.

xc(k + 1) = AK(k)xc(k) + BK(k)y(k) (12a)
u(k) = CK(k)xc(k) + DK(k)y(k) , (12b)

where the controller state vector xc(k) has the
same dimension of x(k).

The main goal of the paper is to find some
sufficient conditions which guarantee the existence
of an output feedback controller which finite-time
stabilizes the overall closed loop system, as stated
in the following problem.

Problem 2. Let us denote by RK the weight of
the controller state. Then, given system (1), find
an output feedback controller (12) such that the
corresponding closed-loop system is finite-time
stable with respect to (δ, ε, blockdiag(R, RK), N).
4

Note that we assume, for the sake of simplicity,
that the weighting matrix does not contain cross-
coupling terms between the system state and
the controller state. Moreover the definition of δ
and ε in Problem 2 must take into account the
augmented state of the closed loop system.

3. MAIN RESULTS

Let us start with the state feedback Problem 1.
The solution of this problem is given by the
following theorem.

Theorem 2. (FTS via state feedback). Problem 1
is solvable if there exists a positive definite matrix-
valued function Q(·) and a matrix-valued function
L(·) such that

( −Q(k + 1)
Q(k)A(k)T + L(k)T B(k)T

A(k)Q(k) + B(k)L(k)
−Q(k)

)
< 0,

k ∈ {0, 1, . . . , N − 1} (13a)

Q(k) ≤ R−1 , k ∈ {1, . . . , N} (13b)

Q(0) >
δ2

ε2
R−1 ; (13c)

in this case the gain of a state feedback controller
solving Problem 1 is given by G(k) = L(k)Q(k)−1.

PROOF. First of all note that condition vi) in
Theorem 1 can be equivalently rewritten as(−Q(k + 1) A(k)Q(k)

Q(k)A(k)T −Q(k)

)
< 0 . (14)

Now we can apply the last inequality to sys-
tem (11), by replacing A(k) with A(k)+B(k)G(k);
in this way we find that the system is guaranteed
to be FTS w.r.t. (δ, ε, R,N) if

( −Q(k + 1)
Q(k)(A(k) + B(k)G(k))T

(A(k) + B(k)G(k))Q(k)
−Q(k) < 0

)

k ∈ {0, 1, . . . , N − 1} (15a)

Q(k) ≤ R−1 , k ∈ {1, . . . , N} (15b)

Q(0) >
δ2

ε2
R−1 . (15c)

The proof follows by letting G(k)Q(k) = L(k).
2

Remark 6. In order to find a numerical solution
to Problem 1, i.e. to compute the matrix-valued
functions Q(·) and L(·), a back-stepping algorithm
can be used for conditions (13). In the first step
inequalities (13a) and (13b) can be solved, obtain-
ing the matrices Q(N), Q(N−1), L(N−1). Given
Q(N −1), in the next step (13a) and (13b) can be
solved for k = N −2, finding Q(N −2), L(N −2),
and so on. The final step consists in solving (13a)
and (13c) together for k = 0. In order to find
the smallest value for ε, in the various steps a
further condition can be added, which imposes the
maximization of the smallest eigenvalue of Q(k) at
each step. 3

Next, we move to finite-time stabilizability via
output feedback. First we need the following tech-
nical lemma.

Lemma 1. ((Gahinet, 1996)). Given symmetric ma-
trices S ∈ Rn×n and Q ∈ Rn×n, the following
statements are equivalent.

i) There exist a symmetric matrix T ∈ Rn×n

and matrices M ∈ Rn×n, N ∈ Rn×n such



that

P :=
(

S M

MT T

)
> 0 , P−1 =

(
Q N

NT Z

)
.

(16)
ii) (

Q I
I S

)
> 0 . (17)

Theorem 3. Problem 2 is solvable if there ex-
ist positive definite matrix-valued functions Q(·),
S(·), an invertible matrix N(·), matrix-valued
functions ÂK(·), B̂K(·), ĈK(·) and DK(·) such
that (

Θ11 Θ12

ΘT
12 Θ22

)
< 0 (18a)




Q(k) Ψ12(k) Ψ13(k) Ψ14(k)
ΨT

12(k) Ψ22(k) 0 0
ΨT

13(k) 0 I 0
ΨT

14(k) 0 0 I


 ≥ 0 (18b)

(
Q(0) I

I S(0)

)
≤ ε2

δ2

(
∆11 Q(0)R

RQ(0) Q(0)

)
, (18c)

where

Θ11(k) = −
(

Q(k) I
I S(k)

)
(19a)

Θ12(k) =
(

Q(k)A(k)T + ĈT
K(k)B(k)T

A(k)T + C(k)T DT
K(k)B(k)T

ÂT
K(k)

AT S(k + 1) + CT B̂T
K(k)

)
(19b)

Θ22(k) = −
(

Q(k + 1) I
I S(k + 1)

)
(19c)

Ψ12(k) = I −Q(k)R (19d)

Ψ13(k) = Q(k)R1/2 (19e)

Ψ14(k) = N(k)R1/2
K (19f)

Ψ22(k) = S(k)−R (19g)

∆11 = Q(0)N(0)Q(0) + N(0)RKNT (0) .
(19h)

PROOF. From v) in Theorem 1 it follows that
Problem 1 is solvable if there exist a positive
definite matrix function P (·) and matrices AK(·),
BK(·), CK(·) and DK(·) such that

( −P (k) AT
CL(k)P (k + 1)

P (k + 1)ACL(k) −P (k + 1)

)
< 0

k ∈ {0, 1, . . . , N − 1} (20a)
P (k) ≥ blockdiag(R,RK) , k ∈ {1, 2, . . . , N}

(20b)

P (0) ≤ ε2

δ2
blockdiag(R,RK) , (20c)

where

ACL(k) =
(

A(k) + B(k)DK(k)C(k) B(k)CK(k)
BK(k)C(k) AK(k)

)

(21)
is the closed loop system matrix.

Now, according to (Gahinet, 1996), let us define

P (k) =
(

S(k) M(k)
MT (k) ?

)
,

P−1(k) =
(

Q(k) N(k)
NT (k) ?

)
,

where ? denotes a ‘don’t care’ block, and

Π1(k) =
(

Q(k) I

NT (k) 0

)
Π2(k) =

(
I S(k)
0 MT (k)

)
.

Note that by definition

P (K)Π1(k) = Π2(k) . (22)

By pre- and post-multiplying inequality (20a) by
blockdiag(ΠT

1 (k), ΠT
1 (k+1)) and blockdiag(Π1(k),

Π1(k +1)) respectively, pre- and post-multiplying
(20b) and (20c) by ΠT

1 (k) and Π1(k) respectively,
taking into account (22) and Lemma 1 the proof
follows once we let

B̂K(k) = M(k + 1)BK(k) + S(k + 1)B(k)DK(k)

(23a)

ĈK(k) = CK(k)NT (k) + DK(k)C(k)Q(k)
(23b)

ÂK(k) = M(k + 1)AK(k)NT (k)

+ S(k + 1)B(k)CK(k)NT (k)
+ M(k + 1)BK(k)C(k)Q(k)
+ S(k + 1)

(
A(k) + B(k)DK(k)C(k)

)
Q(k) .
(23c)

Note that (18a) implies that, at each time instant
k, (

Q(k) I
I S(k)

)
> 0 (24)

which, according to Lemma 1, guarantees the re-
construction of P (k) starting from the knowledge
of S(k), Q(k) and N(k). 2

Remark 7. (Controller design). Assume now that
the hypothesis of Theorem 3 are satisfied; in order
to design the controller the following steps have to
be followed:

i) Find Q(·), S(·), N(·), ÂK(·), B̂K(·), ĈK(·)
and DK(·) such that (18) are satisfied.

ii) Find matrix function M(·) such that M(k) =
(I − S(k)Q(k))N−T (k).

iii) Obtain AK(·), BK(·), CK(·) and DK(·) by
inverting (23).

4

Note that (18a) and (18b) are linear difference
matrix inequalities. Concerning the initial con-
dition (18c), it has to be a posteriori checked;
alternatively it can be taken into accout within the
design cycle by solving a quadratic optimization
problem for k = 0 over Q(0), S(0) and N(0).



Moreover, in order to compute M(·), the matrix-
valued function N(·) has to be invertible. To this
end we can force the condition N(k) > 0 for
all k ∈ {1, 2, . . . , N}. According to (Amato et
al., 2003) this does not cause any loss of generality,
since the existence of a nonsingular N(·) satisfying
(18b) and (18c) implies the existence of a positive
definite N(·) satisfying the same inequalities.

3.1 An Example

In order to illustrate the application of the pro-
posed controller design procedure, let us consider
system (1) where

A =



−0.2 0 1
0.2 0.4 −0.6
0.2 0 −0.6


 B =




0.2844 0.9883
0.4692 0.5828
0.0648 0.4235




C =
(

0.5155 0.4329 0.5798
0.3340 0.2259 0.7604

)
.

Our goal is to solving Problem 2 with δ = 1, ε = 2,
N = 5, R = RK = I.

First we solve (18b) for k = 5 and k = 4
together with (18a) for k = 4; we find Q(4), Q(5),
S(4), S(5), N(4), N(5), ÂK(4), B̂K(4), ĈK(4),
DK(4). Then, according to Remark 7, point ii),
we compute M(4) and M(5).

Then, by using (23), we compute the controller
matrices:

BK(4) = M−1(5)B̂K(4)−M−1(5)S(5)B(4)DK(4)

=



−0.6365 0.8893
0.2006 −0.2804
1.2811 −1.7899




CK(4) = ĈK(4)N−T (4)−DK(4)C(4)Q(4)N−T (4)

=
(

0.3327 −0.2352 −0.1029
0.0323 −0.0937 0.0684

)

AK(4) = M−1(5)
{
ÂK(4)− S(5)B(4)CK(4)NT (4)

−M(5)BK(4)C(4)Q(4)

− S(5) [A(4) + B(4)DK(4)C(4)]Q(4)
}
N−T (4)

=



−0.0766 0.0830 −0.0082
0.0285 −0.0255 −0.0114
0.1372 −0.1682 0.0677


 .

Then we solve (18a) and (18b) for k = 3 using
the matrices computed at k = 4; the procedure
is iterated until k = 0, where the satisfaction of
(18c) is checked.

4. CONCLUSIONS

In this paper we have dealt with the finite-time
control of linear time-varying systems. Starting
from some conditions guaranteeing finite-time sta-
bility we have provided sufficient conditions for
the solution of state and output feedback prob-
lems. The proposed design conditions are ex-
pressed in terms of linear difference matrix in-
equalities.
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