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Abstract: In this article the control problem of a micro-actuator (µ − A) is
considered. The µ − A is composed of a micro-capacitor, whose one plate is
clamped while its other flexible plate’s motion is constrained by hinges acting
as a combination of springs and dashpots. The distance of the plates is varied by
the applied voltage between them. The flexibility of the moving plate coupled to
the dynamics of the plate’s rigid-body motion results in an unstable, nonlinear
system of distributed nature. Utilization of FEM can approximate the µ − A
dynamics nonlinear-PDE to a finite nonlinear-ODE. The nonlinearity stems from
the plate’s rigid-body motion, while all flexibility effects are considered as additive
linear-terms. A controller composed of: a) a feedforward term for regulation at
selected setpoints, and b) a constrained finite time optimal controller to handle
any deviations from the equilibrium is synthesized. Simulation studies are used to
investigate the efficacy of the suggested controller.Copyright c©2005 IFAC
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1. INTRODUCTION

Micro-capacitor structures (Sitti, 2001; A. Men-
ciassi and A. Eisinberg and I. Izzo and P. Dario,
2004; Ishihara et al., 1996) have been used as the
primitive components of single-degree of freedom
linear µ-Actuators. These actuators could be uti-
lized for positioning, orienting or applying a force
(in the range of picoNewtons) in various applica-
tions (Lee et al., 2003; Liu et al., 2003; Zhang
et al., 2003). Linearity of the actuator’s model
is a desired key feature as it enables the us-
age of classical controllers. However, most nano–
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positioners are nonlinear, and advanced closed
loop controllers are necessary.

Due to the diminution of these µ-As, there is a
need to properly devise advanced control tech-
niques for satisfying certain performance crite-
ria (Lyshevski, 1998). These techniques primarily
stem from the modelling peculiarities of these
micro–actuators, including the effects that tend
to be ignored in the macro-world and yet are
important in the micro-domain.

Rather than relying on the design of nonlin-
ear controllers, which require a large computa-
tional burden for their impplementation, there is
a trend to utilize linear optimal controllers (Robl
et al., 1999) computed in an offline manner. More-
over optimal control of PieceWise Affine (PWA)
systems have also received great interest in the



research community, since PWA systems represent
a powerful tool for approximating non-linear sys-
tems (Bemporad et al., 2002; Grieder et al., 2004).
The algorithms for computing the feedback con-
trollers for constrained PWA systems were pre-
sented for quadratic as well as linear cost functions
of finite time (Borelli et al., 2003).

Even though the multi-parametric approaches
rely on an off-line computation of a feedback law,
the computation can quickly become prohibitive
for larger problems. This is not only due to the
high complexity of the multi-parametric programs
involved, but mainly because of the exponential
number of transitions between regions which can
occur when a controller is computed in a dynamic
programming fashion (Borelli et al., 2003).

In this article, a multi-parametric controller in
conjunction with a feedforward controller is ap-
plied in simulation studies in the positioning prob-
lem of a microactuator.

2. MICRO–ACTUATOR MODELLING

The µ-A from a dynamics point of view corre-
sponds to a micro-capacitor whose one plate is at-
tached to the ground while its other moving plate
is floating in air. The boundary of the moving
plate is either supported (pinned) or constrained
by hinges (springs), as shown in Figure 1.

2.1 Dynamic Plate Model

The equation of motion for a 2-D distributed
thin plate (Hong et al., 1998) floating on air and
supported at its boundary is expressed as follows

Lw(x, y, t)+Cẇ(x, y, t)+mpẅ(x, y, t) = f(x, y, t),

where L is a time-invariant, symmetric, non-
negative differential operator, C is a damping op-
erator, mp is the mass density of the 2-D struc-
ture, f(x, y, t) is the time-varying distributed con-
trol force acting on the thin plate at the (x, y)–
coordinate, and the structural proportional damp-
ing is C = α1 + α2mp.

In thin plate theory the operator Lw(x, y, t) is

Eh3

12(1 − ν2)
(wxxxx + 2wxxyy + wyyyy) ,

where E is the Young’s modulus, ν is the Poisson’s
ration of the plate material, h is the thickness
of the plate, and the symbol wxy corresponds to
∂
∂x

∂
∂y w(x, y, t).

For a thin square plate of length �, shown in
Figure 1, the equations of motion along with its
boundary conditions are:

Fig. 1. µ-Actuator Thin Supporting Plate

wtt + D1(wxxxx + 2wxxyy + wyyyy) = 0,

0 < x, y < �, t > 0

w(x, y, 0) = w0(x, y), wt(x, y, 0) = w1(x, y),

0 < x, y < �,

w(0, y, t) = w(�, y, t) = wxx(0, y, t) = wxx(�, y, t) = 0,

0 < y < �

D(wyyy + (2 − ν)wxxy) = −k2w, y = 0, 0 < x < �

D(wyyy + (2 − ν)wxxy) = k2w, y = �, 0 < x < �

wyy + νwxx = 0, y = 0, y = �, 0 < x < �

where D1 = D
ρ = Eh3

12mp(1−ν2) , w0(x, y) (w1(x, y))
is the initial displacement (velocity) of the plate in
z-direction, and k represents the linear restoring
force of the springs.

Application of the assumed modes method dic-
tates that the displacement and point control
force can be expressed as

w(x, y, t) =
∞∑

i=1

Wi(x, y)ηi(t)

f(x, y, t) =
p∑

i=1

Fi(t)δ(x − xi)δ(y − yi)

where ηn(t) is the nth mode modal displacement,
Fi(t) is the force amplitude, p is the number of
actuators, δ(x−xi) and δ(y−yi) are spatial Dirac
delta functions.

For the given stated boundary conditions, closed
form solutions can be found (Zarubinskaya and
Horssen, 2003) for the free-response expressions
w(x, y, t). Retaining a finite number of modes
the ordinary differential equation describing the
motion for the nth mode is

η̈n +
(
α1ω

2
n + α2

)
η̇n + ω2

nηn =
p∑

i=1

W ∗
n(xi, yi)Fi.

When: 1) the forcing element f(x, y, t) = f(t) is
independent of the point of application, 2) there
is no proportional damping (α1 = 0), and 3)
retaining only one mode (n = 1) the equation of
motion degenerates to

η̈1 + α2η̇1 + ω2
1η1 = W ∗

1 F. (1)



In this case, the displacement of the plate z(t) =
w(x, y, t) is identical for all points (x, y) of the
plate and equal to η1(t). Multiplication of both
sides of ( 1) by W ∗

1 = m yields the following
equation of motion mz̈ + bż + kz = F , where m
is the total mass of the plate, and k is the overall
stiffness of the springs, as shown in Figure 2.
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Fig. 2. Rigid body dynamical modelling

2.2 Electric Force Model

Application of a voltage U between the capacitor’s
plates generates an electrically–induced force

Fx =
εAU2

2s
,

where A is the area of the plates, ε is the dielec-
tricic constant and s is the distance between the
plates when the spring is relaxed.

2.3 µ-Actuator Model Linearization

The nonlinear equation of motion is

mz̈ + bż + kz =
aU2

(s − z)2
(2)

with z being the displacement, and a = εA
2 .

The “equilibria”-points zo depend on the applied
nominal voltages Uo. Equation (2) for z̈o = żo = 0
yields

kzo =
aU2

o

(s − zo)2
or Uo = ±

[
kzo(s − zo)2

a

]1/2

(3)

This nominal Uo–voltage must be applied as a
feedforward action if the capacitor’s plate is to
be moved and maintained at a distance zo from
its unstretched position. Moreover an additional
feedback term is needed in order for the plate’s
position despite the presence of disturbances and
discrepancies between the used (simplified) sys-
tem model and the real system.

The linearized equations of motion can be found
around the equilibria points (Uo, zo). Perturbation
theory for the variables U and z, where U = Uo +
δu and z = zo + δz yields the equation of the
perturbed system as:

mδz̈ + bδż + kzo + kδz =
aU2

o

(s − zo)2
+

2aU2
o

(s − zo)3
δz +

2aUo

(s − xo)2
δu . (4)

From the utilization of the perturbation dynamics
from (3) into (4) we obtain

mδz̈ + bδż +

[
k − 2aU2

o

(s − z0)3

]
δz =

[
2aUo

(s − z0)2

]
δu . (5)

If we leave the “perturbation dynamics” expressed
in terms of (δz, δu), we would not be able to apply
the methodology of constrained optimal control,
since the constraint on δz will be the same for
each operating region. To overcome this problem
we need an equivalent expression for (5) which will
use z instead of δz. For this purpose we add the
term mz̈o + bżo + kzo on both sides resulting in

z̈ +
b

m
ż + Kuz =

2aUo

m(s − xo)2
δu + Kuzo ,

where Ku =
k− 2aUo

(s−zo)3

m . The previous equation can
be written in a more compact form as

z̈ + qiż + riz = Ku
i δu + Ko

i (6)

where we used the ith subscript to denote the de-
pendence of the previous variables on the selected
equilibrium point.

The equivalent state space model accounting for
small perturbations around the equilibrium point
(zo,i, Vo,i) is

[
ż
z̈

]
=

[
0 1

−ri −qi

][
z
ż

]
+

[
0

Ku
i

]
δu +

[
0

Ko
i

]
. (7)

The dependence of this PWA approximation on
the specific equilibrium point is through the
ri,K

u
i ,K0

i terms.

These linear time-invariant state space models
can be transformed into their discrete equivalents
under the assumption of a sampling process with
sampling period Ts. The resulting discrete models
can be cast in a compact form as[

z(k + 1)
ż(k + 1)

]
= x(k + 1) = Aix(k) + Biδu(k) + fi . (8)

This set of constrained PWA–subsystems from (8)
will be stabilized by a multi-parametric controller,
as shown in the following section.

3. CONSTRAINED FINITE TIME OPTIMAL
CONTROLLER DESIGN (CFTOC)

Consider a constrained discrete piecewise affine
system of the form shown in (8). The number of
subsystems involved in this notation depends on
the granularity of the selected equilibria points
(i = 1, . . . , L).



Let the state vector and control effort be con-
strained within certain regions (guard functions),
or [

x(k)
δu(k)

]
∈ P = Hix + Jiu ≤ Ki (9)

These functions partition the (2+1)-dimensional
space [x(k), δu(k)] into a set of polyhedra.

The controller’s objective is to generate the δu(k)
control effort by minimizing a cost over a receding
horizon as

δu(k) = min
δu(k)

[||Px(k + N)||∞+

N−1∑
i=0

(‖Rδuk+i‖∞ + ‖Qxk+i‖∞)

]
,(10)

where N is the prediction horizon interval , Q,R
and P are the weighting matrices on the states,
the control effort and the desired final state,
respectively.

The solution to the CFTOC–problem with P =
0 is a PWA state feedback control law of the
form (Borelli et al., 2003; Grieder et al., 2004;
Kvasnica et al., 2004; Bemporad et al., 2002)

δu = F k
j x(k) + Gk

j , if x(k) ∈ Rk
j , (11)

where Rk
j , j =, . . . , Nk is a polyhedral partition

of the set of feasible states X(k) spanning the
space affected by the prediction horizon N , the
guard functions defined in (9) and the parameters
P,Q,R and x(k + N) involved in the formulation
of the cost function in (10).

It should be noted that the δu(k) control effort can
be generated in an off line manner, thus simplify-
ing the real-time computation of the control effort.
Furthermore, the number of computed polyhedra
depends on the length of the prediction horizon
N and the nature of the guard functions.

The overall control framework appears in Fig-
ure 3, where it is shown that the suggested con-
troller consists of: 1) a feedforward portion gen-
erating the control effort Uo based on the desired
position zo, and 2) the multi parametric controller
generating the deviation δu to account for any
perturbations along the nominal desired position.

4. SIMULATION STUDIES

Simulation studies were carried on a micro actua-
tor’s non-linear model where its SiO2–plates have
an area A = 40µm×40µm = 160 ·10−9m2, with a
mass m = 7.0496 · 10−10Kgr. The initial gap was
set to s = 4µm while the dielectric constant of
the air was ε = 9 · 10−12 Coulomb2

N ·m2 . The allowable
displacements of the micro–capacitor’s plate in
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Fig. 3. Feedforward and Multi-parametric Feed-
back Control Framework

the z vertical axis were z ∈ [0.1, 3.9] µm. The goal
of the controller was to move the capacitor’s plates
from an initial position to a new desired one (set-
point regulation).

The derivation of the nonlinear equation (1) is
obtained through the usage of a Finite-Element
Model (FEM). The FEM computes the vibra-
tional modes (Kuijpers et al., 2003; Mita et al.,
2003; Morrell and Salisbury, 1998; L. Meirovitch,
1967) accounting for the effects of bending, tor-
sion, axial and shear stress. The natural frequency
of the 1st mode was computed from the FEM–
model and is equal to ω1 = 2π5410 rad/sec while
the stiffness k = 0.8146N/m. The damping coef-
ficient, assuming air as the medium between the
capacitor’s plate, is b = 1.4378 · 10−5N · sec/m.

The µ-actuator’s first three modes (ω2 = 2π8240,
ω3 = 2π14597) of vibration appear in Figures 4, 5
and 6.

Fig. 4. µ-Actuator’s 1st–Vibrational mode

Fig. 5. µ-Actuator’s 2nd–Vibrational mode

For the linearization process 5 operating points
were selected with a discretization step equal to
0.88µm. These operating points are zo,i = 0.49 +



Fig. 6. µ-Actuator’s 3rd–Vibrational mode

i0.88(µm), i = 0, . . . , 4 and the selected sampling
period was Ts = 2pi

10ω1
.

Given these operating points (equilibria) the space
is partitioned into 5 regions [0.1, 0.88), [0.88, 1.66),
[1.66, 2.44), [2.44, 3.22) and [3.22, 3.9). Each lin-
earized system is valid in only one of these regions
(i.e., the 1st subsystem with zo,0 = 0.49 = 0.1+0.88

2
is valid for all values of z within [0.1, 0.88)µm).
Therefore the guard functions for δz are −0.39 ≤
δz < 0.39. In this study, no constraint was posed
on the velocity δż of the moving plate, while
the control feedback effort was constrained (guard
function) −10 ≤ δu ≤ 10.

The parameters involved in the cost function were
P = 0, Q = 100 I2×2 and R = 10−4. The
number of polyhedra involved in the partitioning
of the [z, ż] space w.r.t. the prediction horizon
N = 1, . . . , 5 appears in Figure 7.
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Fig. 7. Polyhedra partitioning vs. Prediction Hori-
zon (N = 1, . . . , 5)

For N = 2 the space is partitioned into 88 regions,
as shown in Figure 8, while the generated feedback
command appears in Figure 9.

The µ-actuator’s step response appears in Fig-
ure 10, where the initial state was z(0) = 0.5µm
and the final desired state was set at 2µm.

In a similar manner, the overall control effort
Uo|z=2µm + δu appears in Figure 11, where in
all sampling instants the δu term was constrained
within [−10,+10] Volt.

The effect of increasing the prediction horizon
from N = 2 to N = 5 results in: a) an increase to
the number of the polyhedra involved in the par-
titioning, and b) an overall “smoother” trajectory
compared to the earlier one. Figure 12 displays
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Fig. 8. Polyhedral Partition for N = 2
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Fig. 9. Feedback Control Effort w.r.t. Polyhedral
Partition (N = 2)
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Fig. 10. µ–Actuator step response

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−3

−10

−5

0

5

10

15

20

25

Time (sec)

Vo
lt

Fig. 11. Control command for step–response

the 217–polyhedra for the same cost parameters
and N = 5.
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Fig. 12. Polyhedral partition for N = 5

5. CONCLUSIONS

In this paper a constrained finite time controller
was developed for controlling the positioning of
a microactuator. In principle, the linear dis-
placement microactuator operates like a varying
micro-capacitor. The displacement of the capac-
itor’s plate is controlled by the combination of
a feedforward and the multi-parametric feedback
controller. The system’s nonlinear model of the
system is linearized around different operating
points. All perturbations in the states and the
system’s control input were modelled in corre-
sponding PWA dynamics. The resulting control
structure was applied in simulation studies to the
nonlinear model of a micro-actuator for testing
the efficacy of the suggested control scheme.
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