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Abstract: Non-negative matrix factorization (NMF) is a method for dimensionality 
reduction and simplification of large data sets.  Unlike tools such as principle 
components analysis (PCA) and factor analysis , NMF produces basis vectors that 
correspond to perceptible features in the original data.  This is particularly useful when 
working with data where visual interpretation of the simplified representation is required.  
Typical data of this type is condition monitoring (CM) data, where visual interpretation 
of vibration spectra is a standard diagnostic tool.  The res ults suggest that NMF 
processing of CM data simplifies the visual interpretation process, and opens the way for 
automation of this task.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Modern process plants generate an enormous amount 
of data, which is typically stored by automated 
process control historians.  It is common cause that 
significant improvements in process optimization can 
be made by appropriate examination of this data – so-
called exploratory data analysis (EDA) or data 
mining.  EDA techniques range from those with a 
rigorous analytical foundation, such as principle 
components analysis (PCA) (Jolliffe, 1986) or 
independent component analysis (ICA) (Hyvärinen et 
al., 2001), to those which are notable simply for 
effectiveness, such as the many variations of neural 
networks (see Aldrich (2002) for a recent overview of 
EDA techniques and their applications).  Most of 
these techniques are characterized by producing 
reduced data sets that are difficult to relate to the 
original data, except by abstraction (as an nth moment 
in PCA for example).  The techniques are useful, but 
there are many cases where it would be extremely 
helpful if the reduced data sets could be related in 
some straightforward and visible way to the original 
data. 
 

The core requirement in EDA is to devise a linearly 
transformed version s of the original data V such that  
 
  V=As    (1) 
 
(where A is a matrix) with the intention that s should 
have mo re analytical utility than V; hence the goal is  
a factorization of the original data matrix.  Hyvärinen, 
et al. (2001) have categorised the available transforms 
as either second order and “faithful”, or higher-order 
and “meaningful”, which is a useful distinction when 
the purpose is visualisation. 

 
 

2. NON-NEGATIVE MATRIX FACTORIZATION 
 
Non-negative matrix factorization (NMF) is a 
recently invented technique (Paatero and Tapper, 
1994; Lee and Seung, 1999) which falls into the 
“meaningful” category.  The basis  of NMF is that a 
data set V (represented as an n × m matrix) can be 
approximated by the product of two factors W and H 
such that  
 
  V ˜  WH   (2) V    WH   (2) 



     

 
Where W is an n × r matrix and H is an r × m matrix, 
where r is smaller than n or m.  There is a critical 
constraint that all of V, W  and H must be non-
negative, so the method lends itself to classes of data 
where this is not a limiting constraint (and where the 
assumptions of zero mean and Gaussian distribution, 
on which many techniques depend, do not hold). 
  
The non-negative constraint is key to the utility of the 
technique, as it means that the components and 
weights must be positive, so all constructions of 
components must be additive.  Specifically, there can 
be no component that is subtracted from others (by 
means of a negative weight for example); hence all 
components must be intuitively real parts of the 
whole.  
 
The effect of the NMF approximation is to generate a 
reduced set of basis vectors W which are combined 
linearly using weights (the rows of H).  In many types 
of process data this is a useful simplification, with 
benefits in terms of subsequent processing, noise 
reduction, and imp roved visual intelligibility.   
 
In particular, NMF returns a sparse set of base 
features and weights , which corresponds better to a 
parts-based model of the raw data than do either of 
PCA or ICA, in which there are many basis vectors 
which are added and subtracted with varying weights 
to arrive at an approximation of an individual data set. 
 
NMF has so far been used for purposes as diverse as 
identifying parts of visual images (for example, the 
parts of faces in photographs of faces (Lee and Seung, 
1999)); for analysis of Raman spectroscopy data, 
hyperspectral images, and human brain chemical shift 
images (Sajda et al., 2003); and for transcription of 
music (Smaragdis and Brown, 2003).  It is this last 
application that points the way from the plant 
visualis ation point of view, as it was the first to make 
use of a novel property of the NMF matrices.  This is 
that the weight vector (H) gives a time -series 
representation of the development of intuitively 
tractable parts of the data.  As will be shown in the 
exa mples that follow, this is enormously useful in 
simplifying data analysis. 
 
There are a number of methods for finding the factors 
W and H.  The methods usually depend on the cost 
function used to define the quality of the 
factorization.  In this work, Euclidean distance 
(between the original vector V and the product of 
factors WH) is used as the cost function.  This cost 
function provides a simple successive approximation 
algorithm for generating W and H (see Lee and 
Seung (2001) for a description of the algorithm and a 
proof of its convergence). 
 
The use of NMF in data visualization will depend on 
the hypothesis to be tested, but might proceed as 
follows: assume a plant process generates data at a 
fixed rate, so that in each time interval one set of data 

is  acquired.  It is believed that in this data there is an 
underlying structure that could be visible to an 
operator or analyst, but this structure is obscured by 
noise and the large size of the data set.  If one forms a 
matrix V where the columns are data sets from 
successive time intervals, one can approximate the 
matrix by two factors W and H of reduced dimension, 
according to Eqn. 2.  The factor W  will contain base 
data sets or data features, which should be simpler 
and more recognizable than the original data, and the 
factor H will give their weights over time, so that one 
can visualize how the process has evolved in time. 
 

3.  SIMPLIFICATION OF PLANT CONDITION  
DATA USING NMF 

 
The use of NMF can be illustrated with examples 
using vibration data gathered by on-line condition 
monitoring systems on real industrial plant.  It must 
be stressed that the data sets used in this paper were 
gathered with no a priori knowledge of likely plant 
behaviour; they encompass plant operational failures 
that were neither exp ected nor instigated, although ex 
post facto knowledge was obviously helpful in 
selecting the data sets. 
Many predictive maintenance systems monitor the 
vibration spectra of machines in order to detect the 
early onset of mechanical and electrical failures.  
However, many failure modes, such as mechanical 
failure of bearings, do not add significantly to the 
vibration energy and cannot be detected by 
observation of the average energy, or even by 
bandwidth-limited energy measurements.  The best 
method of detecting early bearing failure is by 
observing the shape of the spectrum of vibration, 
which will show certain signature features depending 
on the type of bearing and the failure mode.  For 
example, a flaw in the inner race of a roller bearing 
would produce a regular acoustic impulse each time a 
roller passes  over the flaw, and the impulses would 
produce a ringing tone whose frequency would 
depend on the resonant structure of the bearing.  A 
combination of simple mathematics and accumulated 
experience suggests a set of features which a human 
analyst could look for in a vibration spectrum to 
detect early stages of bearing failure.   
 
There is an underlying assumption in predictive 
maintenance that for each root cause of failure there 
is a corresponding spectral feature set, and 
recognition or identification of this feature set will 
constitute diagnosis of cause of impending failure.   
Additionally, the magnitude of the feature is assumed 
to give some sense of the degree of progression of the 
failure. 
 
Unfortunately, large-scale monitoring of machinery 
for bearing failure is impossible, if human scrutiny of 
each vibration spectrum is required.  Fortunately, 
NMF may be used to reduce the complexity of the 
data.  The following examples present three cases 
showing how this may be achieved.   
 



     

 
3.1  Linear mixture model 
 
A linear mixture model (after Sajda et al. (2002)) for 
the vibration spectra is proposed.  Using the same 
notation as in the discussion on NMF, a set of 
sampled spectra V (where each column is a single 
vibration spectrum) may be modelled as follows: 
 
  V = WH + N  (3) 
 
where the columns in W represent the spectral shapes 
which are characteristic of individual root causes, the 
rows in H represent the preponderance of each root 
cause, and N is additive nois e.  The sampled vibration 
spectra are magnitude spectra resulting from a Fast 
Fourier Transform (FFT) of time series vibration data, 
so the elements of V must be non-negative; similarly, 
it is reasonable to assume that all of W, H and N 
would have non-negative elements. 
 
Based on this model, our analysis has three purposes:   

• to extract the constituent spectra as columns 
of W, which will enable a diagnosis of root 
cause of failure;  

• to extract the preponderance or weights as 
rows of H, which will give the relative 
significance of the root causes;  

• to examine the columns of H, which will 
indicate the development in time of each 
possible root cause.   

This last point is particular to plant processes, which 
tend to be time-varying, and indicates our point of 
departure from prior NMF applications in spectral 
analysis. 
 
 
3.2  Supervised and Unsupervised Methods 
 
The basic NMF method is an example of 
unsupervised learning, and its use in vibration 
spectrum analysis is therefore an example of blind 
source separation.  Sajda et al. (2003) have shown 
that by applying constraints (forcing low spectral 
amplitudes to zero, and seeding W with 
“endmembers”, or expected spectral feature sets), 
improved results are possible.  However, in order to 
maximise the generality of results , in the present 
work only the standard (unsupervised) NMF is used. 
 
 

4.  EXAMPLES FROM REAL PLANT 
CONDITION DATA 

 
In the first case, the data consists of twenty vibration 
spectra taken on successive days from a motor driving 
a pharmaceutical centrifuge.  The motor developed a 
bearing failure on the eighteenth day and failed before 
the twenty-first day.  The spectra are shown in the 
traditional waterfall diagram in Figure 1.   
 

 
 
Fig. 1. Waterfall diagram of vibration (velocity 

magnitude) spectra from an electric motor.  The 
spectra were taken at daily intervals, with the 
earliest spectrum at the front.  The last three 
spectra show significant change, which would 
indicate a possible failure developing (the raised 
noise floor is traditionally considered to indicate 
bearing deterioration).  The motor suffered a 
catastrophic bearing failure shortly after the last 
spectrum was sampled. 

 
In order to perform NMF it is necessary to decide on 
the degree of reduction required.  Some guidelines 
will be developed later in this paper, but at this stage 
the minimum sensible value of r=2 is used (assuming 
that there are two states, representing normal and 
abnormal operation, which it is the goal to 
distinguish).  The figures below show the vectors W 
and H’. 

 
 
Fig. 2. The two basis vectors produced by the NMF 

process.  These ought to correspond to two 
distinct feature sets of the vibration spectra.  The 
relative weight of these feature sets and their 
development in time is shown in Figure 3. 



     

 
Fig. 3. Graph of H’ showing the relative weights of 

the two components and their development in time  
(the column index of H is effectively the day 
number).  The thin line indicates the weight of the 
rearmost spectrum in Figure 2, and the thick line 
gives the weight of the foremost spectrum.  The 
point at which the bearing failure starts to affect 
the vibration (on day 18) is extremely clear.  

  
Figures 2 and 3 illustrate the separation of the data 
into features and weights.  It can be seen that the 
reduction of the spectra to two distinct feature sets, 
and the demonstration of their development in time, 
substantially clarifies the situation for a human 
analyst.   
 
The interpretation of H’ is a key to the successful use 
of NMF in this application.  In cases such as Fig. 3 it 
is straightforward, but it is less so when the data 
reduction is insufficient.  This can be illustrated with 
the trivial case of performing NMF on a similar data 
set which has been manipulated to have identical 
columns.  For this case, Figures 4 and 5 are 
equivalent to figures 2 and 3 above.  It can be seen 
that the NMF process generates two identical feature 
sets , and that the relative weights oscillate between 
the two feature sets. 

 

Fig. 4. Waterfall diagram showing the two basis 
vectors produced by NMF on a set of 20 
identical spectra.  Not surprisingly, these two 
basis vectors are identical to the original spectra. 

 

 
Fig. 5. Graph of H’ for the NMF of 20 identical 

spectra.  It can be seen that the weights are 
antisymmetric with respect to an average value.  
This appearance is characteristically observed 
when the data is insufficiently separable; 
although in some cases the weights converge to 
two constant values. 

The effect of insufficiently reducing the data is shown 
in a trivial case in Figure 5, and in a real case in 
Figure 6 (for the same data as in Figs 1, 2 and 3).  It 
can be seen that the effect is to produce a pair of 
weights in H’ (that is, a pair of rows of H) which 
fluctuate antisymmetrically around a mean value. 

 
Fig. 6.  Graph of H’ for the original data of Figure 1, 

reduced using NMF to three feature sets.  It can 
be seen that the weight for the fault condition 
features is still extremely apparent.  However, 
the attempt to factorize (extract) a third feature 
set produces weights for the non-fault feature set 
which fluctuate antis ymmetrically, suggesting 
that there is no significantly different third 
feature set. 

 



     

Figures 7 and 8 show the vectors H’ and W for a 
second machine failure, in which a centrifuge bearing 
deteriorated suddenly.  Note that in Fig. 7 the 
“healthy” component falls to zero as the “failing” 
component rises; this is counterintuitive as the 
healthy components should form a baseline for all 
spectra.  The reason for this anomaly is touched on in 
Section 6. 

 
Fig. 7.  The weights of the feature sets for the 

vibration data for a failing centrifuge bearing.  It 
can be seen that the basic features of a healthy 
bearing (thin line) are replaced on day 14 with 
the features of a failing bearing.  

 
Fig. 8.  The basis vectors, or spectral feature sets, for 

a failing centrifuge bearing.  The lower set is the 
failing spectrum, and the upper (shifted for 
clarity) is  the healthy spectrum.  The peaks in 
the lower spectrum between 1200 and 3000 Hz  
are caused by regular impact events as the 
bearing rotates. 

 
 

6.  PRACTICAL USAGE OF THE NMF 
TECHNIQUE 

 
There are a number of variables used in the NMF 
algorithm which can act to improve or reduce the 
utility of the result.  These include the cost function, 
the degree of data reduction, the number of iterations 

of the algorithm, and the number of restarts (from a 
random initialisation) that may be required to 
generate a useful convergence. 
 
There is disagreement over the choice of cost 
function, with Lee and Seung (1999) stating that it is 
not important, while the results of Sajda et al. (2003) 
indicate otherwise.  This is a non-trivial question and 
requires research beyond the scope of this initial 
exploration. 
 
In respect to whether a useful factorization – defined 
as a correct decomposition into parts – can actually be 
achieved, the reader is directed to Donoho and 
Stodden (2004), who have derived conditions for that 
result.  In particular, their requirement R3 (“complete 
factorial sampling”), that the dataset contains all 
permutations of the features in all possible 
combinations, is unlikely to be met in practice.  
Hence, one must approach the results with the 
necessary scepticism.  Notably, if there is an invariant 
region in each dataset (which is highly likely in plant 
condition data), then this region is likely to be found 
in each base vector (hence the result in Figure 7). 
 
An important observation is that because the output of 
NMF is inherently tractable to perception, it is 
immediately clear whether the factors are useful or 
not.  This saves a great deal of speculative number 
crunching, and allows a fast convergence to useful 
parameters. 
 
Users of PCA and ICA will be familiar with the use 
of eigenvalues as a measure of the significance of the 
components, and the use of this knowledge in 
deciding the degree of data reduction.  In NMF, the 
degree of data reduction does not appear to be as 
sensitive to the number of components .  Figure 9 
below shows the error in NMF factorization relative 
to the number of components, and it can be seen that 
the error reduces smoothly as more components are 
added.  Figures 10 and 11 give associated results for 
the number of iterations and restarts respectively. 
 

 
Fig. 9.  The error between input data and the 

approximation result, for raw data similar to 
figure 1, is shown.  The original data set had 
29 columns, hence the zero error for that 
value.  It can be seen that there is no step or 
inflexion in this curve, suggesting that the 



     

choice of degree of reduction is not obvious.  
The measure of error is Euclidean distance. 
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Fig. 10.  Convergence to a solution for all possible 
values of r (reduced dimension), from r=1 (top) to 
r=29 (bottom) .  The number of iterations to 
convergence does not vary significantly with the 
value of r, as each iteration includes a column -by-
column local optimisation; so the processing 
complexity and time inherently scales with r, rather 
than the number of iterations. 

 
Fig. 11.  Convergence to a solution for the same data 

set and same r (r=4) value, with four different 
random seed data sets.  It can be seen that 
there is some considerable variation in 
convergence depending on the initial data set. 

 
 

7.  CONCLUSIONS 
 
Non-negative matrix factorization is a useful tool in 
simplifying one type of plant data, namely vibration 
spectra captured for condition monitoring.  The 
output matrices are directly interpretable as spectral 
components, and the weights of those components in 
time, although some care must be taken in this 
interpretation.  Specifically, attempts to over-specify 
the output must be recognised, and it should be noted 
that the independence of the base components is not a 
foregone conclusion, particularly when the input data 
does not fully characterise the system behaviour. 
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