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Abstract: This article discusses a problem of stabilizafior an inverted pendulum on
a cart. In this work the cart does not travel along an horizbliie, which is the case
commonly considered in the literature, but along an amjtrzath in the horizontal-
vertical plane. The main obstacle encountered lies in ttietiiat the feedback controlled
system becomes unstable in some "critical regions” aloag#nt path curve (close to the
points where the path is vertical). The overall closed loggieam is characterized by an
alternation of periods of stability and instability andstate is proved to be stable under
some conditions, which involve the geometry of the path.u$ations results are provided
for the case in which the path is a circt@opyright 2005 IFAC
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1. INTRODUCTION same strategy that would stabilize the system when the
path is a circle. It is proved that, unless of choosing

The inverted pendulum on a cart is an important (€ reférence speed sufficiently low, it is possible to
benchmark for nonlinear control techniques and hasfOIIOW any given curve, provided that this curve has a
been widely analized under different points of view. g{ott;ally b_otund%d cutrr\:attjre an(i a nont.nulll _cI:_lrJ]rvatU(e

: ' at the points where the tangent is vertical. The main
2$]eerfor kl)r;sstgg cae ('?‘g’ggr:n (aBr;ng;uezlu taZ’O%%())Of)Orfo;; AN obstacle encountered in this problem lies in the fact
contr%){led Lagrarl)"n%ian o'ne (Shiria.;m al, 2000) that the internal dynamics of the constrained system
for a passivity based app,roach, (HoIzther, 2004) became unstable in some “critical regions” along the
for an Euler-Lagrange backward integration approach, ¢t Path (namely those close to the points where the
(Angeli, 2001) for an approach based on a continuoustangem to the reference curve is vertical). This article

feedback, finally a tracking problem is presented in is an improvement of (Consolini and Tosques, 2004)

that focuses on the VTOL aircraft, in fact as it is shown
(Mazenc and Bowong, 2003). in Section 3 the path following problem for the VTOL
In the most common configuration, the cart travels aircraft is strictly connected to the one considered in
along an horizontal line and, to the best of our knowl- this article (see also (Fliegg al., 1999) for an expla-
edge, the general case in which the cart travels on anation of the relationship between the VTOL and the
generic curve on the vertical plane has not been con-inverted pendulum). Simulations results are provided
sidered in detail in the literature. This article presents for the case where the curve is a circle. The main
an analysis of this more general case, presenting dimitation of the work is that the basin of attraction
control strategy that, under some geometrical hypothe-of the equilibrium is rather small.
ses, allows the inverted pendulum to be practically
stabilized at the upright position while the cart travels
with a given velocity on an arbitrary path. The control
function is generated on the basis of the current curve
direction and curvature, i.e. the controller uses the



where

o 0 ~—ml(y’(A)Tv(6)6
Cm”’(—mMﬂu»TwmA 0 )

i ioli _ (((M+M)gp(A))
is the Coriolis termG = ( _mglsin(6) is the

gravity term andr = ( 8) is the vector of forces.

T
By left-multiplying equation (1) by vector{?) ,

ml? . .
(ml(y’(/\))Tv(e) ) we obtain respectively the fol-
Yo lowing equations:
Fig. 1. Inverted pendulum on a cart constrained on al8 =A2< y"+ (O) ; (g?ﬁg) >4+ <y, ((S:?nsg) > A )
curve. 9
2 THE MODEL A= _m|2 (ml(y’)T\)Gz— (M+m)gy; + f+
detH 2 (3)

Lety = (v1, ¥2) € C*([0,+),R?), with [|y’(A)]| = NT A2 NTysi

1, VA >0 andll = {y(A)|]A > 0} be the image of +m(y )_ vA +mg(y) vsing).

the curvey. Consider an inverted pendulum of mass Where the notatior: a,b > with a,b € R" denotes the
m linked to a moving cart of mas through a  inner product.

massless rod of length, in Figure 1 the pendulum Assuming for simplicity that — m= 1, we get that

is represented as the smaller sphere and the cart . o
the bigger one. Itis supposed that, during the motionjthe following system has to be verified

the cart center of madis constrained to stay on the - 32,01 0 coso
curvel and a forcef (t) is applied on it in the direction 0= <A%y'(A)+ g/’ \ sinf >+
tangenttd . Remark that a pendulum model similar to cosB

this one can be found in (Fliess al., 1999), with the +<y'(A), < sind )

only difference that in that case the pendulum is not
constrained and has actually two degrees of freedom.

6(
A(

which represents the pendulum dynamics and the re-
quired force is given by

A=u
The end is to show that starting from the initial point 0) (
yo = y(0) with an initial angle6y it is possible to
find a control forcef(t), which has to be applied
to the centerP of mass of the cart, such that the
resulting motion(A (t),6(t)) of that system satisfies
that lim_ e A (t) = 4+ (in other words all the curve f=[(M+1)gy, — (y")TV,'\ 24
I will be covered) andf(t) remains close to the AT AT - 22
upright position. To determine the dynamic equations —9((y")" vsin® —(y’)’ v6] +detHu.

on motion, takeq = )9\ as coordinates vector,
whereA is the arc-length coordinate representing the 3. EQUIVALENCE WITH THE VTOL AIRCRAFT
position of P along the curve™ and 6 is the angle PATH-FOLLOWING PROBLEM
between the rod and the vertical axis. The kinetic
energyT of this two-masses system is In this section it is shown that a path-following prob-
Ty lem formulation for the VTOL aircraft leads to the
T=q Haq, same equation as the inverted pendulum, this is related
where the inertia matrii is given b to the fact that these two systems are equivalent by
¢ y . static feedback (as stated in (Flietsal,, 1999)).
!
H(q) = ( | Mj\—mT 0 —Im(y (/\Iz)) v(B)) , Consider the simplified VTOL aircraft model intro-
—Im(y’(A)) " v(6) m duced in (Sastret al, 1992):
the potential energy is given by K\ . _sing e cosd . 0
U(q) = (M+m)gy(A) +mglcoss . \y )~ "\ cos8 2\ sind g
SettingL = T — U the dynamic equations are derived 6= pu T
through the Euler-Lagrange equation (X(0),y(0))" = ,(O)
(X(0),¥(0)) = y'(0)vo
oL _dot _. 8(0) = 6o, 6(0) = &,
dq dtoaq 4)

where(x,y)", the output of the system, are the coor-
dinates of the center of masgsof the aircraft on a
H(q)§+C(g,9)9+G(q) =1 1) fixed inertial frameyyg the initial scalar velocity is

which implies that



4. PROBLEM FORMULATION

Given the original inverted pendulum system:
A_ a2, 0 cosf
0= <Ay (’\)+<g)’<sin9) >+

+<y’(/\),(cs:?nsg) >u ©)

we want to show that for ang > 0 there exists a one
dimensional smooth manifoldl € ¢ ([0, +o),R%),

in the state space and a sufficiently snratt O such
thatV(6o, 6, Vo) € B(2(0),r) there exists a feedback
. . . . u(6,68,A,1)€€([0,+),R) such that the solution
The goal is to show that starting from the initial point g system (6) has the following properties:

yo = y(0) with an initial angle6y it is possible to _ )

find a control(ug,uz) such that the resulting motion e A € 7([0,+),R) is a strictly monotone func-

Fig. 2. Vtol aircraft

the angle between the aircraft symmetry axis and the
vertical y-axis (see figure 2).

(A(t),0(t)) of the VTOL verifies that lim_. ;. A (t) = tion such that
+oo0 (in other words all the curv€ is covered) and ; _
6(t) remains close to 0, that is the VTOL symmetry tlﬂl’\ (t) = +eo (7)
axis remains close to the vertical axis. To this end, if 4
o . X(t) . ) )
A< (04 Ryissuchtnal i) ) < yh ). (8(1),6(1),A (1,4 (1)) € BER(1)¢), ¥ =0,
' N . . _ _ (8)
must be ; =y/A, ; = y"A2+y’A therefore (wherevxe R4, B(X €) = {x € R¥|[x—X] <r}).
it follows from (4) that In other words the cart will cover all over the pdth
and the pendulum angl@ remains close to a given
u —sin@ +eu cosf\ "2 reference trajectory, in which, as it will be showng
1\ cosf 2\ sing ) =Y and 6 are small and therefore the pendulum remains
i 0 close to the vertical along the trajectory.
+ + . . L .
) Y (9) The equation vector field (6), which is the “nominal
6 =puy, system” will be denoted shortly as
which implies, setting for simplicitg = u = 1, that x=f(xu).
the following system holds:
A_ 2,0 0 cosf
6= <A V(A)+(g)’(sm9):>+ 5. CONTROL PROCEDURE
/ cosf
+<y'(A), < sin@ > ~u (5) In this section we give an idea of the main steps of
A=u the proposed control procedure. The control action is
0(0) = 6o 9(0) s based on a second order approximation of the path
E The controller knows at every time the tangent to the
A(0)=0,A(0)=wo,

curve and its curvature (which define the osculating
circle to the curve). A feedback control function is

which represents the equation of the internal con- . - e
strained dynamics for the VTOL and the control found that stabilizes the internal dynamics if the path

is the osculating circle itself. The same causal control

( ﬂl) is given by the following equations: law is be used to stabilize the internal dynamics when
2 the output of the systems covers a general path. The
) 0 ino osculating circle represents an approximated and in-
U= < A2y + (g) 7 < _C(S)g‘e > > 4 complete internal model of the path.
, ( —sin@ Consider the following system
T<Y.{ cosg |~V -- Ksi
s2on (0O cosf {'9: | VSt @) g0+ cosart + ) (9)
U= <A%y +(g),(gn9)>4- V=u.
, { cosfB This system is denoted more shortly as
+<V¥.{ sing ) =Y

x= FO0(x)

)

then the solution of system (4) will verify (5), that is wherex= (6, 9, v)T and the subscrig denotes that
the center of mass of the VTOL will stay gn this is the “approximated system”.



A solution to (9) is given by

0 =Isin(wt + @)
V=V (10)
u=0,

Vi@

wherel = Fre2 Denote this solution as a$*? =

(8, 9, vi)T. Note that this solution has the remarkable

property of being obtained with a null control.

Setxe = x—r¥% = (g, &, W), as the difference be-
tween the solution to (9) and (10), then

{ &= ge+ cogwt + @)u

W—u. (11)

which can be written as
Xe = FP?(Xe,U) = Ae(t)Xe + Be(t)u,

wherew, @ indicate the dependence of the vector field

f from these two parameters, the subsceiptenotes
the “error equation” and\y(t), Be(t) are matrix func-
tions.

The following Proposition shows that the time varying
periodical system (11) can be globally asymptotically

stabilized with a static feedback control.

Proposition 1.1f (w, ) ¢ {(0, 3),(0,—3)}, then sys-

tem (11) is globally asymptotically stabilized by state

feedback.

Proof. Consider the coordinate transformatian=
T (t)Xe, whereT (t) is the matrix

(9— w?)cog wt + @) —2wsin(wt + @) 2wsin(wt + @) cog wt + @)

( —wsin(wt + @) coqwt + @) —cogwt + )2 )
(—3wg+ w)sin(wt + @) (g—3w?)cogwt+ @) 2w (cogwt + )% —sin(at + 9)?)

in z-coordinates equation (11) takes the form
Z=<a(t),z> +(bi+by(t))u

wherea(t) is a zero mean periodic function fo; =
g’ng and by(t) = #cos(zm +2¢)). Moreover
det(T(t)) = —(by +by(t)?. Notice that system (11) has
not a well defined relative degree, becab@g zeroes
periodically. Choose

u= 7M < k’ z>,

ka

wherek, is the mean value of functiofb; + b (t))
Sign (by +by(t)) andk = (kg, ko ks)T is a gain vector
such thatp(s) = ky + kos+ kss? + §° is Hurwitz. The
closed loop system takes the form

(12)

Z=PNt)z— <kz>,
whereAy(t) is a bounded matrix in which every line

is null but the last one and every component has

zero mean. LetA. be the companion form matrix
associated top(s), consider the solutiorP to the
Lyapunov equation

ALP+PA =1,
and define the potenti®l(z) = z" Pz Then

V=~ 247 (B(OP+PAYZE V(5 —m(D)

whereAy is the maximum eigenvalue &andm(t) is
a periodic and zero mean function. Therefore
to 1
V(t) SV(O)e_fO(m_m(t))dt

)

and
lim V(t)=0.

t—+oo

(13)

Remark that being (t) singular for some, (13) does
not in general imply thalim;_. ;. Xe(t) = 0. To prove
this last part remark that because of the periodicity
of (9), its solution can be expressed as

Xe(t) = P(t)e" xe(0) ,
whereP(t) is periodic. Nowz(t) =T (t)x(t) =T (t)P(t)

&Fx(0) and, being the ter (t)P(t) periodic,F must
be negative definite and

Jim xe(t) =0.

which ends the prodf]

Consider system (11) when the reference speed is null,
i.e. vy = 0. It reduces to the following time invariant

system
010 0
Xe=1900 |+ cosp |u
000 1
Proposition 2. For anyn > there exists gain constants
K1,K>2, K3 for which

e system (11) is stable
e system (14) is stable for everyp such that

|cosg| > 1.

(14)

Proof omitted for sake of brevity.

The following definition describes the set of paths for
which the control procedure presented here works; it
consists of those in which the curvature and its deriva-
tives are bounded, the curvature is non-null whenever
the curve is vertical and the vertical points are sep-
arated by a distance which is always greater then a
positive constant.

Definition 1. If My, Ma, Mz, Mg € RT andM; > Ms,
set

f (M1, Mo M3 Ma) = {y [7A)]] < My,
[V )] < Mp, VA € [0, +e0);
IV(A)]| > M3
VA such thap(A) £ argy(A)) € {2, ~ 3 }
|A1— A2 > Mg,
m

VAL A2t (A1), @(ho) € (5, — D }}}

o/ (M1, M2, M3, My) will be the set of the “admissible”
curvesy which can be followed by the system.

Definition 2. When (w, @) ¢ {(0, 3),(0, —Z)} the
transition matrix®,, »(T,t) is the solution to the fol-
lowing differential system

{ 9000 (1.1) = Ad(1)@up(1.1) + Be(T)0
®(0,t) =1




whereu(t) is the stabilizing feedback control defined
in (12).

Definition 3. If (w, @) ¢ {(0, 5),(0
form R, (w, ) is defined as follows

00

Ri(@,0) = | ®pg(T,1)T g (T,t)dt

Remark thatP(w, @) is the solution at timé = 0 to

the Lyapunov differential equation associated to (11).

From Proposition 1R, (w, ) is well defined when-
ever(w, @) ¢ {(0, 7),(0, =5)}.

Definition 4. Giveny € 7 (M1, Mz, M3, M) theVA >
0 define the following potential

Vi (A,X) = XT Ry (K (A), 9(A )X
where

where k(A) is the scalar curvature df at A and
P(A) =arg(y(2))

Remark that ifv; # 0, R, (w, @) is well defined for
every curvey € d(Ml, M2, M3, M4) by Proposition 1
because(vik(A), @(A)) & {(0,7),(0,—3)}, VA €
[0, +).

Definition 5. For anyn > 0, thecritical set%), is
% ={A:cosp(A) <n }.

Given a functionV(x), the derivative olV, with re-
spect to a vector field (x) is denoted as
LiV(X) =V'(x) f(x),

whereV’(x) is the Jacobian matrix &f atx.

Lemma 1.If the pathy is a circle of curvatur& and
such that arfy(A)) = @(A), then the derivative of
the potentiaM, (A,x) with respect to the vector field

fO.9(0) (x, u(x)), satisfies

L g0V (A, X) = —||x]|?

Proof. This comes directly from the definition bf, o,
being the solution to the Lyapunov differential equa-
tion associated to the time varying system (11).

Proposition 3. If rk(4).¢(A) js the reference solution
and x is the solution of the nominal systeffx, u),
then

9 )0y k)00 (x 1) g () -+ o (X)u

dt

(15)
whereys (x) andy,(x) are suitable functions such that
there exist;, ¢, > 0:

Wi(x) < VZer|IX| , ga(x) < VEca|IX||

for ||x|| andv; sufficiently small.

Proof omitted for sake of brevity.

, =)}, the quadratic

Lemma 2.The derivative of the potentia¥, (A,X)
with respect to system (15), computed along a generic
curvey(A), if A € €, can be written as by

< [Ix] + 0u(x) + 02 2%
1 Zd/\

whereg; (x) andoa(x) are suitable functions such that
limy, o(01(X),02(x)) = 0, uniformly onR3,

L fr'IVVI' (A X

Proof omitted for sake of brevity.

Lemma 3.Given a curvey, if A1, A2 ¢ €, are such
that cosp(A1) = cosp(A;) then

Jim Ry (Ve (Az), 9(Az)) = im Ry (ve k(A2 9(Az)

Proof. It comes from the fact that, ag approaches
0,R; (rk (A1), @(A1)) andRy (VK (A1), @(A2)) are the
solution to the same differential equatian.

Proposition 4. SetM1, M, Mz, M4 € R, with My >

Ms, for anyy € o/ (M1, M2, M3, M4) and for anye > 0
there exists a one dimensional smooth manifold

%> ([0,+),R3), in the state space and a sufficiently
smallr > 0 such thatv(6o, 6o, Vo) € B(Z(0),r) there
exists a feedbacki(0, 6, A, A) € €*([0,+»),R)
such that the solution to system (6) has the following
properties:

o A € 67([0,+),
tion such that

R) is a strictly monotone func-

fim A(t) = +eo (16)
(8(1),8(t),A(t),A (1) € B(E(A(t)),€), ¥t >0,
(17)

Sketch of the prooGivene > 0, set
Ve el
maxy Umax(Ry, (Vrk (A), ¢(A)))

whereimaxP) is the maximum eigenvalue &, then
if W, (e(t)) < Vg for everyt > 0, then||e(t)|| < € and
the thesis is proved.

Given anyd > 0, choose) such that, for any € %,
Lu(A) <.

Giveny € o/ (M1,M2,M3,M3z), for any A ¢ ¢, it is
from Lemma 2

LiVie (A, %e) < —|lxel| + 0 (%) ,

with limy, o0 (Xe) = 0. WhenA € €, unless of re-
ducing n there existst;, tp such thatA(t;) = Ay,
A(t2) = Az, with Ap =inf), ¢nA>Ag A1 =sup, ¢EnA <Ay

Consider the difference

Vi (A2, %e(t2)) — Vo (A1, Xe(ta)) =
= Xe(t2)T P(ViK (A2), (A2) Xe(t2) +
—Xe(t1) TP(VrK (A1), @(A1))%e(ta)

from Lemma 3itis



Jim R, (vek (A2). @(A2)) = fim Ry (vekc(Az), (M)

By combining these equations is possible to prove
that by reducing) andv, and choosing a sufficiently
small radiug, then for any initial conditiorg(0) with
le(0)]] < R we have thatvy, (A (t),Xe(t)) < Vg, for
everyt > 0. Now it is sufficient to define&(A) =
(r@aryd)) A), vA >00

6. SIMULATIONS

This section presents a simulations for the case where
the cart lies on a circle. The circle has a radius

5m, the reference speedvs= 0.4m/s,(x(0),y(0)) =
(0,0), the initial speed is(x(0),y(0)) = (0.4,0),

and 6y = 0, 6 = 0. The assigned eigenvalues are
{—10, —12, —14} and the threshold value for det

is —0.1.

The simulation results are reported in figure 3, where
it can be noticed that the small perturbations of the
speed along the trajectory happen when the determi-
nant approaches zero and the tangent to the trajecton
becomes parallel to the y-axis.

7. CONCLUSIONS

This article is about the control of an inverted pen-

dulum on a cart that moves along an arbitrary curve.
A control strategy which proves to be effective also

in simulation, has been introduced and a theoretical
explanation has been given. This particular problem
seems very interesting and the approach may be gen
eralized to more general non minimum phase systems.

REFERENCES

Angeli, David (2001). Almost global stabilization of
the inverted pendulum via continuous state feed-
back.Automatica37(7), 1103—-1108.

Astrom, K. J. and K. Furuta (2000). Swinging
up a pendulum by energy controAutomatica
36(2), 287—-295.

Bloch, AM, NE Leonard and JE Marsden (2000).
Controlled lagrangians and the stabilization of
mechanical systems i: The first matching theo-
rem. IEEE Transactions on Automatic Control
45(12), 2253-2270.

Consolini, L. and M. Tosques (2004). A controlled
invariance problem for the vtol aircraft with
bounded internal dynamics. Iffroceedings of
the 43th IEEE Conference on Decision and Con-
trol. Paradise Island, Bahamas.

Fliess, M, J Levine, P Martin and P Rouchon (1999).
A lie-backlund approach to equivalence and flat-
ness of nonlinear systenm&EE Transactions on
Automatic Control4(5), 922-937.

14r

12r

101

theta [rad]

30 40 50 60
time [s]

. .
10 20

0.65

0.6

0.55

0.5

0.45

speed [m/s]

0.41

0.35f

0.3F

0.25
0

30 40 50 60
time [s]

. .
10 20 70

Fig. 3. Inverted pendulum trajectory, orientation,
speed for the circle

Holzhuter, Thomas (2004). Optimal regulator for the
inverted pendulum via euler-lagrange backward
integration Automaticad0(9), 1613—-1620.

Mazenc, F and S Bowong (2003). Tracking trajec-
tories of the cart-pendulum systedutomatica
39(4), 677—-684.

Sastry, H., J.Hauser and G. Meyer (1992). Nonlinear
control design for slightly non-minimum phase
systems: application to v/stol aircraftutomatica
28, 665—679.

Shiriaev, A, A Pogromsky, H Ludvigsen and O Ege-
land (2000). On global properties of passivity-
based control of an inverted pendulumterna-
tional Journal of Robust and Nonlinear Control
10(4), 283-300.



