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1. INTRODUCTION

We are usually used the deterministic differential
equations to model physical systems. But this
approach can be inadequate, particularly when
the model is not exactly known. Then a stochas-
tic differential equations (SDE) may be used to
represent these kind of systems. The advantage of
SDE is that they contain a random term which
represents the randomness within the systems to
model. Thus, the systems understudy are com-
posed by two parts : the drift one which rep-
resents the dominant action of the system and
the diffusion one representing randomness along
the dominant curve. In such situation the deter-
ministic approach does not work, so we consider
in the present paper a stochastic differential sys-
tem in the Itô form. The observer-based control
(Hsu et al., 1994; Juan et al., 1994; Stoorvogel
et al., 1994; Iwasaki and Skelton, 1995), (Mita
et al., 1998; Alazard and Apkarian, 1999; Jun’e
and Zhaolin, 2002) is usually applied when we do
not have access to all the states of a system. But
to our knowledge there are only few results on
the stochastic observer-based control theory (see

(Chen and Zhang, 2004)).
In this paper, we propose a method to design
a control law and the observer into two steps.
First, we search for a linear control law which
ensures H∞ specification. Then, the obtained lin-
ear combination of the state is used to solve the
unbiasedness (decoupling) condition on the drift
part of the closed-loop system.
We finally apply functional filtering techniques
developed for deterministic systems in (Darouach
et al., 2001) to determine the observer-based con-
troller matrices.
Note that in many practical situations, there are
uncertainties which affect the system. In this pa-
per, the stochastic system is also subjected to
norm-bounded uncertainties.

2. PRELIMINARIES AND NOTATIONS

Throughout the paper, E represents expectation
operator with respect to some probability measure
P. In the sequel herm(A) stands for A + AT .
Notice also that, given a matrix M , the general-



ized inverse of M is M† satisfying M = MM†M

(Lancaster and Tismenetsky, 1985).
L2

`
Ω, IRk

´
is the space of square-integrable IRk-

valued functions on the probability space (Ω,F ,P)

where Ω is the sample space, F is a σ-algebra of
subsets of the sample space called events and P
is the probability measure on F . (Ft)t>0 denote
an increasing family of σ-algebras (Ft) ∈ F . We
also denote by bL2

`
[0,∞) ; IRk

´
the space of non-

anticipatory square-integrable stochastic process
f(.) = (f(t))t∈[0,∞) in IRk with respect to (Ft)t∈[0,∞)

satisfying

‖f‖2
L̂2

= E{
Z ∞

0

‖f(t)‖2 d t} < ∞

where ‖.‖ is the well-known Euclidean norm.

3. PROBLEM STATEMENT

Let us consider the following uncertain stochastic
system8>>>>><>>>>>:

d x(t) = ((A+∆A(t)) x(t)

+ (B1+∆B1(t)) v(t)+B2u(t)) d t

+((A0+∆A0(t)) x(t)+(B0+∆B0(t)) v(t)) d w(t)

z(t) = C1x(t) + D11v(t) + D12u(t)

y(t) = (C2 + ∆C2(t)) x(t) + (D21 + ∆D21(t)) v(t)

(1)

where x(t) ∈ IRn is the state vector, z(t) ∈ IRq

is the controlled output, y(t) ∈ IRp is the output
vector, u(t) ∈ IRm is the input and v(t) ∈ IRr is
the disturbance vector. w(t) is a zero mean scalar
Wiener process verifying (Has’minskii, 1980)

E(d w(t)) = 0 and E(d w(t)2) = d t. (2)

The matrices ∆A(t), ∆B1(t), ∆A0(t), ∆B0(t),
∆C2(t) and ∆D21(t) represent the parametric un-
certainties and satisfy the following relation264∆A(t) ∆B1(t)

∆A0(t) ∆B0(t)

∆C2(t) ∆D21(t)

375 =

264Mx

Mx0

My

375∆(t)
h
Nx Nv

i
(3)

with ∆T (t)∆(t) 6 Ik and ∆(t) ∈ IR`×k.
In the sequel, all the variables will be given
without referring to time t explicitly (for example
x instead of x(t)). We aim to design an observer-
based controller with the following structure :

d η = Hη d t + J1y d t + J2u d t (4a)
u = η + Ey, (4b)

where η(t) ∈ IRm , m 6 n is the observer state and
H, J1, J2 and E are to be designed.

Definition 1. (Hinrichsen and Pritchard, 1998;
Xu and Chen, 2003) The nominal stochastic sys-
tem (1) (without uncertainties i.e. ∆(t) = 0) is
said to be mean-square asymptotically stable if
all initial states x(0), subject to v(t) = 0, yield

lim
t→∞

E
`
‖x(t)‖2

´
= 0. (5)

■

Definition 2. (Xu and Chen, 2003) The uncer-
tain stochastic system (1) is said to be ro-
bustly stochastically stable if it is mean-square
asymptotically stable for all admissible uncertain-
ties ∆A(t), ∆A0(t), ∆B1(t), ∆B0(t), ∆C2(t) and
∆D21(t). ■

Definition 3. (Lin et al., 2001) The uncertain sys-
tem (1) is said to be robustly stochastically stabi-
lizable based on functional observer if there exist a
gain matrix L, a functional observer d η = Hη d t+

J1y d t + J2u d t and a control law u = η + Ey such
that

(i) limt→∞E
`
‖u− Lx‖2

´
= 0 if v ≡ 0,

(ii) the closed-loop system (1)-(4) is robustly
stochastically stable. ■

Problem 4. (Lin et al., 2001) The objective is to
establish a stochastic functional observer (4a) and
a control law (4b) such that

(i) limt→∞E
`
‖u− Lx‖2

´
= 0 if v ≡ 0,

(ii) the resulting closed-loop system (1)-(4) is
robustly stochastically stable with the follow-
ing prescribed disturbance attenuation

‖z‖2
L̂2

6 γ‖v‖2
L̂2

(6)

for every v(t) ∈ bL2 ([0,∞] ; IRm). ■

4. FIRST STEP: DESIGN OF THE
FEEDBACK GAIN

First, consider the nominal system (system (1)
without the uincertainties) and define an obser-
vation error signal as

e = Lx− u = ε− ED21v (7)

with ε = Ψx− η and Ψ = L− EC2 (8)

From (8), the dynamics of ε(t) is given by

d ε = (Hε+(ΨA−HΨ−J1C2)x+(ΨB1−J1D21)v+

(ΨB2 − J2)u) d t + (ΨA0x + ΨB0v) d w (9)

In order to ensure that the dynamics error is
asymptotically mean-square stable independently
of the state x and the perturbation v in the drift
part (in the diffusion part this is due to (2)), the
following two conditions are posed

0 = ΨA−HΨ−J1C2 (10a)
J2 = ΨB2. (10b)

This is “equivalent” to the unbiasedness condition
in the deterministic case.

Now, after having given the motivation of condi-
tions (10a)-(10b), return to the uncertain system
(1).

From (7), the output z(t) of system (1) is given by



z =
h
C1 + D12L −D12

i
ξ

+ (D11 + D12E(My∆(t)Nv + D21)) v. (11)

where ξ =
ˆ

xT εT
˜T .

Before proceeding, let us give the following as-
sumption which will be cleared later.

Assumption 5. Assume that E [ My D21 ] = 0. ■

Then, using the previous developments, assump-
tion 5, relation u(t) = Lx(t) and conditions (10a)-
(10b), the closed-loop (1)-(4) system is given by

d ξ=

[
A+B2L −B2

0 H

]
ξ d t+

[
∆A(t) 0

Ψ∆A(t)−J1∆C2(t) 0

]
︸ ︷︷ ︸

∆A(t)

ξ d t

+

[
B1

ΨB1−J1D21

]
v d t+

[
∆B1(t)

Ψ∆B1(t)−J1∆D21(t)

]
︸ ︷︷ ︸

∆B(t)

v d t

+

[
A0 0

ΨA0 0

]
ξ d w +

[
∆A0(t) 0

Ψ∆A0(t) 0

]
︸ ︷︷ ︸

∆A0(t)

ξ d w

+

[
B0

ΨB0

]
v d w +

[
∆B0(t)

Ψ∆B0(t)

]
︸ ︷︷ ︸

∆B0(t)

v d w

z =
[
C1 + D12L −D12

]
ξ + D11v

(12)

Note that from (12), matrix L can be initially
determined, then the observer’s matrices after-
words. In fact, L is the state feedback given by
the following lemma.

Lemma 6. The system (1) is robustly stochasti-
cally stabilizable by u(t) = Lx(t) and ‖z‖2

L̂2
6

γ‖v‖2
L̂2

if there exit matrices Q = QT > 0, Q ∈
IRn×n, Y ∈ IRm×n and two scalars µ1 > 0 and
µ2 > 0 such that26666664

(1,1) B1 (1,3) Mx QAT
0 0 QNT

x

BT
1 −γ2Ir DT

11 0 BT
0 0 NT

v

(1,3)T D11 −Iq 0 0 0 0

MT
x 0 0 −µ1I` 0 0 0

A0Q B0 0 0 −Q Mx0 0

0 0 0 0 MT
x0

−µ2I` 0

NxQ Nv 0 0 0 0 −(µ1+µ2)−1Ik

37777775<0

(13)

with (1, 1) = AQ + QAT + B2Y + Y T BT
2 ,

(1, 3) = QCT
1 + Y T DT

12.
(14)

The gain L is then given by

L = Y Q−1 (15)

■

Proof. Consider the uncertain system (1) where
we replace u(t) by Lx(t). Then applying the first
LMI of theorem 1 in (Xu and Chen, 2003) we have
the LMI (13). ❏

5. SECOND STEP: DESIGN OF THE
OBSERVER-BASED CONTROLLER

Here we will use the gain L calculated in section 4
to derive an “unbiasedness” condition on the drift
part of the estimation error (see (Souley Ali et
al., 2004)).

Matrix L is assumed to be full row rank without
loss of generality. Notice that if it is not the case
for the solution given by (15), we may perturb L

a little to fulfill the full row rank condition.

Since L is a full row rank matrix, the equation
(10a) is equivalent to

(ΨA−HΨ− J1C2)
h
L† In − L†L

i
= 0 (16)

where L† is a generalized inverse of matrix L

satisfying L = LL†L (Lancaster and Tismenetsky,
1985) (as rank L = m, we have LL† = Im).
From (16) the following relations hold (Darouach
et al., 2001)

0 = ΨAL† −HΨL† − J1C2L
† (17a)

0 = ΨA + HEC − J1C (17b)

where A = A(In − L†L), C = C2(In − L†L). (18)

Defining K = J1 −HE and using the definition of
Ψ, (17a) gives

H = A−KC (19)

where

A = LAL†, C =

"
C2AL†

C2L
†

#
,K =

h
E K

i
(20)

h
E K

i
Σ =

h
0 0 LA

i
, Σ =

"
My D21 C2A

0 0 C

#
,(21)h

E K
i

=
h
0 0 LA

i
Σ
†
+Z(I2p−Σ Σ

†
) (22)

respectively, where Z is an arbitrary matrix of
appropriate dimensions.

Notice that the uncertain terms combinations
Ψ∆A(t) − J1∆C2(t) and Ψ∆B1(t) − J1∆D21(t) are
easily calculated by means of the system matrices.
For example, using (7) and (22), the first term is
given by

Ψ∆A(t)− J1∆C2(t) =(
LMx −

[
E K

][
C2Mx

My

])
∆(t)Nx + HEMy∆(t)Nx.

(23)

In the second term in (23), one has the expression
HE. Using (19), (20) and (22), one can see that
this expression is bilinear in the gain Z. Similarly
we have the same bilinear expressin while com-
puting the term ΨB1 − J1D21. In order to avoid
this bilinearity the assumption 5 must be used.

Ψ∆A(t)− J1∆C2(t) =((
LMx − CL

{2,M}

)
− Z

(
(I2p − Σ Σ

†
)C{2,M}

))
∆(t)Nx



with matrix C{2,M} and CL
{2,M} are given by

C{2,M} =

[
C2Mx

My

]
, CL
{2,M} =

[
0 0 LA

]
Σ
†
C{2,M}.

The matrix Ψ∆B1(t) − J1∆D21(t) is calculated in
a similar way and the closed-loop system (12)
becomes8>><>>:

d ξ =
“bA+∆A(t)

”
ξ d t+

“bB+∆B(t)
”

v d t

+
“bA0+∆A0(t)

”
ξ d w+

“bB0+∆B0(t)
”

v d w

z = bCξ + D11v.

(24)
where"

∆A(t) ∆B(t)

∆A0(t) ∆B0(t)

#
=

"
Mx

Mx0

#
∆(t)

h
Nx Nv

i
, (25)

with

bA =

"
A + B2L −B2

0 bA− Z bC
#
, bB =

"
B1bB1,1 − Z bB1,2

#

bA0 =

"
A0 0bA0,1 − Z bA0,2 0

#
, bB0 =

"
B0bB0,1 − Z bB0,2

#
bC =

h
C1 + D12L −D12

i
,

Mx =

"
MxcMx1,1 − ZcMx1,2

#
, Mx0 =

"
MxcMx0,1 − ZcMx0,2

#
bA = LAL† − CL

{1,A}, bC = (I2p − Σ Σ†)C{1,A}bB1,1 = LB1 − CL
{1,B}, bB1,2 = (I2p − Σ Σ†)C{1,B}bA0,1 = LA0 − CL
{2,A}, bA0,2 = (I2p − Σ Σ

†
)C{2,A}bB0,1 = LB0 − CL

{2,B}, bB0,2 = (I2p − Σ Σ†)C{2,B}cMx1,1 = LMx − CL
{2,M}, cMx1,2 = (I2p − Σ Σ

†
)C{2,M}cMx0,1 = LMx0 − CL

{2,M0},
cMx0,2 = (I2p − Σ Σ

†
)C{2,M0}

Nx =
h
Nx 0

i
, Nv = Nv,

and

C{1,A} =

[
C2AL†

C2L†

]
, CL
{1,A} =

[
0 0 LA

]
Σ
†
C{1,A}

C{1,B} =

[
C2B1

D21

]
, CL
{1,B} =

[
0 0 LA

]
Σ
†
C{1,B}

C{2,A} =

[
C2A0

0

]
, CL
{2,A} =

[
0 0 LA

]
Σ
†
C{2,A}

C{2,B} =

[
C2B0

0

]
, CL
{2,B} =

[
0 0 LA

]
Σ
†
C{2,B}

C{2,M0} =

[
C2Mx0

0

]
, CL
{2,M0} =

[
0 0 LA

]
Σ
†
C{2,M0}

We have now the next theorem which solves
the robust H∞ observed-based controller design
problem.

Theorem 7. The robust H∞ observer-based unbi-
ased controller design (problem 4) is solved under
E [ My D21 ] = 0 and where L is given by (13)-
(15) if, for some two scalars µ1 > 0 and µ2 > 0,

there exist matrices P = PT > 0 and Q = QT > 0,
P, Q ∈ IR(n+m)×(m+n) such that

"
Ku 0

0 Ir+2`

#T

266666666664

AP + PAT PbCT PAT
0 (µ1 + µ2)PNT

xbCP −Iq 0 0

A0P 0 −P 0

(µ1 + µ2)NxP 0 0 −Ik

BT
DT

11 BT
0 (µ1 + µ2)N

T
v

MT
x 0 0 0

0 0 MT
x0 0

B Mx 0

D11 0 0

B0 0 Mx0

(µ1 + µ2)Nv 0 0

−γ2Ir 0 0

0 −µ1I` 0

0 0 −µ2I`

37777777775
"
Ku 0

0 Ir+2`

#
< 0, (28a)

"
Ky 0

0 Iq+k

#T

266666666664

QA + AT Q QB QMx AT
0 Q

BT Q −γ2Ir 0 BT
0 Q

MT
x Q 0 −µ1I` 0

QA0 QB0 0 −Q
0 0 0 MT

x0QbC D11 0 0

(µ1 + µ2)Nx (µ1 + µ2)Nv 0 0

0 bCT (µ1 + µ2)N
T
x

0 DT
11 (µ1 + µ2)N

T
v

0 0 0

QMx0 0 0

−µ2I` 0 0

0 −Iq 0

0 0 −Ik

37777777775
"
Ky 0

0 Iq+k

#
< 0, (28b)

In+m = PQ, (28c)

where Ky and Ku are two matrices whose columns

span the null spaces of

" eC bB1,2
cMx1,2 0 0eC0

bB0,2 0 0 cMx0,2

#

and

"
−eBT 0 0 0 0

0 0 0 −eBT 0

#
, respectively, and

A=

"
A + B2L −B2

0 bA
#

, B=

"
B1bB1,1

#
, A0=

"
A0 0bA0,1 0

#
, eB=

"
0

Im

#

B0=

"
B0bB0,1

#
, Mx=

"
MxcMx1,1

#
, Mx0=

"
MxcMx0,1

#
,

and eC =
h
0 bCi , eC0 =

h bA0,2 0
i
. (29)

All gains Z are given by

Z = H†RKG†L + Z−H†RHRZGLG†L (30)

where

K=−R−1
1 HT

LS1GT
R

“
GRS1GT

R

”−1

+R−1
1 S1/2

2 R2

“
GRS1GT

R

”−1/2

,

S1 =
“

HLR−1
1 H†L −Q

”−1

> 0,

S2 = R1 −HT
L

„
S1 − S1GT

R

“
GRS1GT

R

”−1

GRS1

«
HL,



Q=

266666664

QA+AT Q QB QMx AT
0 Q 0 ĈT (1,7)T

BT Q −γ2Ir 0 BT
0 Q 0 DT

11 (2,7)T

MT
x Q 0 −µ1I` 0 0 0 0

QA0 QB0 0 −Q QMx0 0 0

0 0 0 MT
x0

Q −µ2I` 0 0

Ĉ D11 0 0 0 −Iq 0

(1,7) (2,7) 0 0 0 0 −(µ1+µ2)Ik

377777775
with (1, 7) = (µ1 + µ2)Nx and (2, 7) = (µ1 + µ2)Nv,
R1, R2 and Z are arbitrary matrices of appropriate
dimensions satisfying R1 = RT

1 > 0 and ‖R2‖ < 1.
Matrices HL, HR, GL and GR are any full rank
matrices such that H = HLHR and G = GLGR

with

H =

"
−eBT QT 0 0 0 0 0 0

0 0 0 −eBT QT 0 0 0

#T

G =

" eC bB1,2
cMx1,2 0 0 0 0eC0

bB0,2 0 0 cMx0,2 0 0

#
■

Proof. The uncertain system (24) is said to be
robustly stochastically mean-square stable with
(6) if, for some two scalars µ1 > 0 and µ2 > 0,
there exists Q = QT > 0 such that (see lemma 6)

Q + herm

 
H

"
Z 0

0 Z

#
G

!
< 0 (31)

or, from the projection lemma (Iwasaki and Skel-
ton, 1994), if and only if there exist matrices
P = PT > 0 and Q = QT > 0 with P = Q−1 such
that (28a), (28b) and (28c) hold.

The LMI (28a) and (28b) are then obtained by
applying the projection lemma (Iwasaki and Skel-
ton, 1994) to the above inequality, where equation
(30) is deduced from relation (22) in (Iwasaki and
Skelton, 1994). The theorem is proved. ❏

The cope complementary linearization technique
(El Ghaoui et al., 1997) can be used to solve the
non convex constraint (28c) to obtain the matrices
P and Q.

6. NUMERICAL EXAMPLE

The matrices of the system (1) are given by

A =

26664
−3.5 −0.5 0 0

0 −1.5 0.1 0

0.1 0 −2 0

0.1 0 0 −1

37775 , B1 =

26664
−0.1 0.3

−1 0.2

0.6 0.5

0 −0.2

37775 ,

B2 =

26664
1 0

0 1

0 0

0 0

37775 , A0 =

26664
0.2 −0.1 0 −0.3

−1 1 0 1

−0.6 0.1 0 −0.5

0.5 0.1 −0.5 −0.4

37775 ,

B0 =

26664
−0.1 0.1

0.5 0

−0.6 0.2

0.5 −0.1

37775 , C1 =

"
1 0 0 0

0 1 0 0

#
, D11 =

"
0 −1

0 −1

#
,

D12 =

"
1 0

0 0

#
, C2 =

"
1 0 0 0

0 1 0 0

#
, D21 =

"
0 −1

0 1

#

and the uncertainties matrices (3) are given by

Mx =

»
0.1
−0.1
0.2
0.2

–
, Mx0 =

»
0.1
−0.1
0.2
0.2

–
, My =

ˆ−0.01
0.01

˜
,

Nx = [ 0.1 0.1 0.2 0.2 ] , Nv = [−0.1 −0.1 ] ,

ξ(0) = [ −2 1 2 1 − 0.1424 − 4.6981]T

where ξ(0) is the initial state [ xT (0) εT (0)]T .
The first step gives γ = 2.9, µ1 = 6.7645,
µ2 = 6.8004 and the feedback gain

L =

"
−0.0256 −0.0831 0.0243 −0.0295

1.7818 −0.6466 −0.2400 −0.8256

#
the second step gives the gain

Z =

"
180.8 142.3 274 −664.8

−2274.2 −1902 −3753.2 8958.3

#
.

The matrices of the observer (4) are then

H =

"
−1.8846 0.0316

5.2478 −1.1874

#
, J1 =

"
−0.0714 −0.0018

−4.2074 −0.4131

#
,

J2 =

"
1.0353 1.0353

0.9695 0.9695

#
, E =

"
−0.0353 −0.0353

0.0305 0.0305

#
.

The following figures show the simulation of the
augmented system (24) (the state x and the ob-
servation error ε for two values of ∆(t) = 0.7 and
∆(t) = −0.7. In these figures the disturbance signal
v is presented only in the error plots.
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Fig. 1. The state x(t).
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Fig. 2. The error ε(t) and the disturbance v(t).
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Fig. 3. Zoom of Fig 2.
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Fig. 4. The state x(t).
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Fig. 5. The error ε(t) and the disturbance v(t).

2 3 4 5 6 7 8
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Case 2 : ∆(t) = −0.7

v(t)

Time [sec]

 

Fig. 6. Zoom of Fig 5.

7. CONCLUSION

This paper has presented a simple solution to
the stochastic robust H∞ reduced order observer-
based control problem via LMI methods. First, a
suitable feedback gain is calculated to achieve the
desired performance. Second, unbiased functional
filtering techniques for determinitic systems are
used to derive the observer-based controller.
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