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Abstract: The aim of this article was to design a MPC controller for the refining
stage of an electric arc furnace. A reduced version of the generic EAF model will
be used - it simplifies the controller. The carbon content is controllable only in one
direction - it can only decrease asymptotically. The goal of the MPC controller will
be to steer the temperature to the desired value before the carbon content reaches
its target value. A controller design was done with this goal in mind and verified
through simulation. The controller was found to be sensitive to plant parameter
variations due to its open-loop nature, but can be improved if timely measurements
are taken of required variables such as temperature and carbon.
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1. INTRODUCTION

Electric arc furnaces (EAFs) are used to convert
scrap iron to steel. The refining of steel in an
electric arc furnace is still a process that depends
on manual control by an operator in order to get
the desired steel grade. This article investigates
the automation of the refining stage in order to
control the variables of steel temperature and
carbon content. Control of these variables will
have an effect on the economics of the process.
This is accomplished by reducing the amount the
corrective runs in order to meet the specification
on temperature and carbon content.

Previous work on modelling and control of electric
arc furnaces by Bekker et al. [2000], Oosthuizen
et al. [2001] focused on the control of the off-

gas system, where relative furnace pressure, CO
emissions and off-gas temperature were controlled.
Oosthuizen et al. [2004] expanded on this con-
troller by adding economic objectives to the con-
troller in order to optimize the economic operation
of the electric arc furnace. In order to conduct the
controller design and simulations, a suitable EAF
model was required. There are only limited ref-
erences to dynamic EAF models in the literature
and many tend to be proprietary [Morales et al.,
1997].

Since no suitable model was available, an exten-
sive modeling effort was conducted by Bekker et
al. [1999]. This effort resulted in a generic model
that consists of 17 non-linear ordinary differential
equations (ODEs). This generic model was further
fitted to measured values to closer resemble a real



EAF plant [Rathaba, 2004]. At the refining stage
of the tap, the off-gas system does not have a
big influence on the temperature and the carbon
content of the steel. The assumption was made
that the amount of metal is constant as well as
the amount of slag. Based on these assumptions,
the model was reduced to 5 non-linear ordinary
differential equations (ODEs) [Rathaba, 2004]. In
this study, parameter estimation was done, which
resulted in model parameters and regions of pa-
rameter uncertainty.

The control method selected for this article is
that of model predictive control (MPC). MPC is
based on the concept of predictive control, which
was pioneered by Richalet et al. [1978] and Cutler
and Ramaker [1980]. The MPC control strategy is
computed from predictions of the output signals
based on a linear internal model that resulted
from optimization of a performance index with
respect to a future control sequence. MPC dis-
plays its strengths when applied to problems with
[Morari and Ricker, 1995]:

• A large number of manipulated and con-
trolled variables;

• Constraints imposed on the manipulated
variables;

• Changing control objectives or equipment
failures.

These properties make MPC well suited for the
control of the refining stage of a tap.

2. EAF REDUCED MODEL

The MPC controller uses an optimization algo-
rithm to calculate the future control sequence.
This requires a number of iterations to be done
on the internal model. If the model is complex,
as is the case with the generic EAF model, this
will result in long computation time. The reduced
model relieves the computation burden in the
refining stage where certain assumptions can be
made to simplify the model.

The generic model was reduced by Rathaba
[2004]. Over an entire tap, the process is very un-
predictable due to delays, breakdowns and main-
tenance that invalidate the assumption of process
continuity. The advantage of the refining stage
is that after the initial measurement, except for
deslagging, the process is mostly uninterrupted
until the final measurement is made. This is typ-
ically a flat bath stage when all melting has oc-
curred; the modeling assumption of homogeneity
is also valid. The bath temperature and carbon
content become important during the refining
stage just before tapping.

Process variables that undergo significant change
during refining are bath temperature, carbon and

silicon concentrations (masses), masses of SiO2

and FeO in slag and all free-board gases. Under
the above assumptions, all masses of the bath and
composite slag are at steady state - they can be
treated as constants. Oxygen injection is the only
mechanism by which the furnace heat balance
(and hence the bath temperature) can be affected
by the free-board gases.

The reduced model is given by

ẋ3 =−kdC (XC −Xeq
C ) (1)

ẋ4 =−kdSi (XSi −Xeq
Si) (2)

ẋ7 =
2MFeOd1

MO2

− x7kgrMFed5(
mT (slag) + x7 + x8

)
MC

+0.13d2 (3)

ẋ8 =
MSiO2

MSi
kdSi (XSi −Xeq

Si) + 0.045d2 (4)

˙x12 = (pt + ηARCd4 − kV T (x12 − Tair)) / (5)[
mT (Fe)Cp(FeL)

MFe

+
2mT (slag) + 2x7 + 3x8

Mslag
Cp(slag(L))

]
where the molar concentrations are given by

Xc = x3/MC
mT (F e)/MF e+x3/MC+x4/MSi

(6)

XF eO = x7/MF eO
mT (slag)/Mslag+x7/MF eO+x8/MSiO2

(7)
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x7Mslag
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x8MF eO
x7MSiO2

+1

)
(8)

XSi = x4/MSi
mT (F e)/MF e+x3/MSi+x4/MSi

(9)

Xeq
Si

= kXSi

(
mT (slag)MF eO

x7Mslag
+

x8MF eO
x7MSiO2

+1

)2

(10)

The reduced equations for the heat balance are:

p2 = (−2HF eOd1/MO2)ηF eO (11)

p5 = d1
MO2

(x12−TO2)CP (O2) (12)

p11 = x7kgrd5(∆HF eO−∆HCO)

(mT (slag)+x7+x8)MC

(13)

pt = p2+p5+p11 (14)

where kdC and kdSi are the constants for removal
of carbon and silicon from the bath; kgr is the
graphite reactivity constant; ηARC and ηFeO are
the efficiencies of arc energy input and bath oxida-
tion; mT (Fe) and mT (slag) are the total masses of
the slag formers and bath - both are assumed con-
stant; MC , MFe, MFeO, MSi, MSiO2 and Mslag

are the molar masses of the different elements. The
states and inputs are described in table 1.

3. LINEARIZED MODEL

For MPC controller design, it is customary to use
a linear internal model. The reduced model of



Table 1. States and inputs.

State State Description Input Input Description

x3 Dissolved Carbon d1 Oxygen injection rate
x4 Dissolved Silicon d2 DRI addition rate

x7 FeO in bath d3 Slag addition rate
x8 SiO2 in bath d4 Arc power

x12 Bath temperature d5 Graphite injection rate

section 2 was linearized in order to be used in
the MPC controller. The operating point around
which the linearization will take place is the av-
erage values from measured tap data summarized
in table 2.

The reduced model was linearized [Goodwin et al.,
2001] and produced the following matrices:

A =


−3.116e−3 −4.477e− 6 4.188e− 6 0

0 −3.168e− 5 2.94e− 5 0
0 0 0 0
0 −7.959e− 6 −1.084e− 5 9.154e−6



B =


0 0 0 0
12 0.13 0 −9.433e− 5
0 0.045 0 0

0.424 0 6.197e− 6 −1.351e− 6


C =

 0 0 0 1
0 1 0 0

1.25e− 3 0 0 0


D =

 0 0 0 0
0 0 0 0
0 0 0 0

 (15)

The linear model has only four states, in com-
parison to the non-linear model with five states.
This is the result of a minimum realization,
that removed a redundant state. The compari-
son of the linearized model with the non-linear
model is shown in figure 1 with respect to tem-
perature and carbon content. The system con-
trollability is calculated as follow: rank(ΓC) =
rank

([
B,AB,A2B,A3B

])
= 4. The controlla-

bility matrix has full row rank and the system
is thus completely controllable. The system ob-
servability is calculated as follow: rank(ΓO) =

rank




C
CA
CA2

CA3


 = 4. The observability matrix

has full column rank and the system is thus com-
pletely observable.

4. CONTROL STRATEGY

In general, the steel grade is determined by the
carbon content. It is also desired that the temper-
ature be at a certain value when the target carbon
content is reached. This should be accomplished
without increasing the FeO content to more than
40% of the total slag mass. The FeO content is

(a) Temperature

(b) Carbon Content

Fig. 1. Linear and Non-linear model comparison

controllable though the oxygen injection rate. The
oxygen injection rate will have a variable influence
on the decarburization rate depending on the level
of the bath carbon. Under high bath carbon levels,
oxygen injection leads to high decarburization,
while only a limited influence is observed in the
late stages of refining. The speed of the reaction
cannot be accelerated through control, because
of the weak controllability of the carbon content.
The aim of the controller would be to steer the
temperature to the desired value before the car-
bon is at its target level.

This work forms part of futher study, where other
control strategies, that incorporate the variable
nature of the model parameters, e.g. Robust MPC
by Kothare et al. [1996], are being considered.

5. MPC CONTROLLER DESIGN

The MPC controller have a few design parame-
ters [Maciejowski, 2002] in the form of prediction
horizon length, control horizon, sampling time,



Table 2. Operating point.

State State value Input Input Value Misc Misc value

x3 480 kg d1 1 kg/s mT (Fe) 80 000 kg

x4 24 kg d2 0 kg/s mT (slag) 6 917.8 kg

x7 4250.6 kg d3 0 kg/s

x8 1405 kg d4 40 000 kW
x12 1400 0C d5 0.5 kg/s

input and output weights and input and output
constraints.

5.1 Prediction and control horizons

A sampling rate of 10 times the closed loop band-
width is considered normal. With model time
constants being above 10s, because the off-gas
subsystem was removed from the model, a sam-
pling interval of 1s was chosen. For the prediction
horizon it is recommended to have the product
of the prediction horizon and sampling interval
at least 2.5 times longer than the longest time
constant. A prediction horizon of 25 was chosen
because Ts = 1s. The accuracy of the model
should also be considered, because a shorter pre-
diction horizon can accommodate a more inac-
curate model, will hence result in a more robust
controller. For inaccurate models a small control
horizon is recommended by Seborg et al. [1989].
Blocking, that is the amount of samples that the
input is kept constant, can also be used to get a
smoother response according to Morari and Ricker
[1995].

5.2 Weights

The weights specifies the severity of the penalty
that a violation of a certain goal will produce.
The cost function (with constraints on the ma-
nipulated and controlled variables) is shown in
eq. 16-19 from Maciejowski [2002]. The weights
on the controlled variables are indicated by µj

and the weights on the manipulated variables are
indicated by λj . The weights µj are used to attain
the goals set on the temperature, while the λj

parameters increases stability.

V =
∑Hp

j=Hw
µj ||ẑ(k+i|k)−r(k+i|k)||2+∑Hu−1

j=0
λj ||∆û(k+i|k)||2 (16)

ymin≤ŷ≤ymax (17)

umin≤u≤umax (18)

|∆u|≤∆umax (19)

The predicted output is ẑ(k + i|k), the reference
trajectory is r(k + i|k) and the predicted change
in control action is ∆û(k + i|k). The prediction
horizon has length Hp. In the case of time delay
in the system, deviations of z from r are not

Fig. 2. System block diagram.

immediately penalized by setting Hw > 1. The
control horizon has length Hu, where in general
Hu < Hp.

As the carbon content is weakly controllable, it
is eliminated from the cost function by setting
its weight to 0. The FeO content is only con-
strained to be less than 40% of the total slag
mass. Temperature is the only remaining goal.
The reference trajectory will be calculated as a
linear reference from the initial temperature to
the desired temperature, because temperature in-
crease is generally linear.

5.3 Constraints on controlled and manipulated
variables

The manipulated variables only have a range of
practical values [Rathaba, 2004]. The controller
must be aware of these constraints in order to
ensure that the desired output can be obtained.
There is also a constraint on the FeO content to
prevent the controller from producing unrealistic
amounts of FeO. The constraints on the manipu-
lated and controlled variables are shown in table
3.

6. SIMULATION

The designed MPC controller is simulated on
the non-linear plant to verify that the controller
achieves its objectives. The non-linear model pa-
rameters are then changed to test the sensitivity
of the controller to the plant uncertainties.

The system block diagram is shown in figure 2,
where the measured outputs are temperature and
carbon content and an estimated value of FeO.
The reference trajectory is the desired trajectory



Table 3. Constraints on manipulated and controlled variables.

Variable Minimum Maximum Variable Minimum Maximum

Oxygen injection rate 0 kg/s 1 kg/s Power 0 kW 40 000 kW
DRI addition rate 0 kg/s 0 kg/s Graphite injection rate 0 kg/s 1 kg/s

Slag addition rate 0 kg/s 0 kg/s FeO amount 0% of Iron 40% of Slag

we wish the output to follow and the measured
disturbances are the DRI addition rate and slag
formers addition rate. These last two inputs are
set as measured disturbance in the MPC toolbox
of MATLAB to ensure correct operation, but in
reality are not used and have no effect on the sys-
tem, because they are set to 0. The manipulated
variables are oxygen injection rate, electric power
and graphite injection rate.

The system was simulated with the MPC tool-
box of MATLAB [Bemporad et al., 2004]. The
designed controller response on the nominal plant
model and the worst-case scenarios are shown in
figure 3. The nominal response is the expected
response in the figures. For these simulations, a
temperature set-point of 1650 Celsius was chosen,
with a constraint on the FeO content of 10000
kg. The initial conditions are the same as the
operating point as summarized in table 2.

To test the sensitivity of the controller to the
uncertainties of the plant, the parameters were
varied between their minimum and maximum
values in order to analyze their effect on the
system [Rathaba, 2004]. The plant parameters are
summarized in table 4. The results of the worst
case scenarios are shown in figure 4. From these
results it is clear that the parameter uncertainties
have substantial effect on the temperature. This
is the worst case scenario and the assumption is
that the plant parameters will be close to nominal
in most cases as shown in figure 3. The system
was simulated while assuming that a measurement
is take in the middle of the process to correct
for model inaccuracies. The result for the model
parameters in worst case is shown in figure 4.

7. CONCLUSION

There is promise in developing a MPC controller
for the refining stage of an electric arc furnace.
The aim of the controller would be to ensure the
correct temperature of the molten metal at the
time the that the carbon content reaches its target
value. This will reduce the amount of unscheduled
delays and will result in increased throughput.

The system would largely be implemented in
open-loop, since only a few measurements are
taken during the refining stage. This would require
proper initial measurements to determine the ini-
tial conditions, otherwise this could result in a
incorrect control sequence. The open-loop nature
of the system makes the controller sensitive to

(a) Temperature

(b) Carbon Content

(c) FeO Content

Fig. 3. Nominal and worst-case plant response.



plant parameter variations. This sensitivity can
be reduced by taking timely measurements of re-
quired variables such as temperature and carbon.
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